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FOREWORD

For the bdenefit of those mathematics teachers who
wish to improve their teaching through independent reading,
the School Mathematics Study Group plans a series, STUDIES IN
MATHEMATICS, on varicus topics directly related to high school
mathematics courses, Particular attention will be paid to
topics which play an important part in the courses being de-
veloped by the School Mathematics Study Group.

One such topic 1s elementary set theory. Indeed, this
plays an important role in practically all of the recent
recommendations for the improvement of high school mathema-
tics courses. We are indeed fortunate to obtain, for the
first volume of the STUDIES IN MATHEMATICS series, an ex-
tensive exposition of the basic concepts of elementary
set theory together with illustrations of the use of set
concepts in various parts of mathematics.

This material was prepared by Professor R. D. Luce, of
Harvard University , for a teaching program of the Operations
Research and Synthesis Consulting Service of the General
Electric Company. The School Mathematics Study Group 1is
grateful to the General Electric Company for permission to
make this material available to high school teachers.

Although some revisions and corrections have been made,
this is essentially the first draft prepared by Professor
Luce. It 1is hoped that a8 revised and extended version of
this material will be prepared in the future.
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SOME BASIC MATHEMATICAL CONCEPTS

INTRODUCTION

As you fiyst study this material, it may seem both more fun and much
less useful than some other mathematical topics you have studied or are
studying. Unlike the other subjects you are studying, most likely you
will never be able to quote a specific result from these materials
which you have used directly to solve a Problem, but if you absorb the
ideas you will find ycurself formulating problems and reasoning about
them in a way that is new and useful.

We shall be concerned with some of the basic building blocks of
precise, logical thought -- & whole collection of ideas and concepts and
methods which, in themselves, are simple and almost fardliar, yet which
can be pyramided and interwoven to yield subtle theories of considerable
pover and depth. These vill be qualitative ideas, and so the resultiog
mathematics is vastly different from the quantitative subjects with
vhich you are more familiar: arithmetic, algebra, and the calculus.
Because the notions are qualitative, they are far more relsted to much
of our ordinary language and ways of thinking -- to classifying, relat-
ing, and ordering concepts and things -- than they are to numerical
idess. A thorough understanding of these basic elements of modern math-
ematiuul thought permits one to reason far more clearly about complex
qualitetive situations, Jjust as & good knowledge of the nmumber system
permits one to reason (often in the form of a calculation) effectively
about quantitative problems.

Looked at another way, we shall be concerned with things discrete,
vhereas classical methematics deals with continuous phenomena. The
mathematics of physics, whicb received its primary impetus from Newton
and Leibnitz and which flowered in the hands of the great eighteenth
and ninteenth century mathematicians, allows us to formulate and to
solve problems involving such concepts as length, weight, time, etc.



The common property of these concepts is that they are iafinitely divisible.
For such problems the traditional mathematics seems ideally suited, and
one cannot expect much, if any, new understanding of them frcm the math-
ematics ve shall study here. But in other areas of applications --
including some microscopic physics -- the principle of infinite divisibil-
ity 1s simply not wvalid, not even as a plausible first spproximaticn.
Atoms exist in a cmall finite mmber of states. Half a hoxrse is no horse
at all. General Klectric's output of large industrial turbines is not
any real number, but a rather small integer. Being on a particular
coomittee in a company may be a relevant fact for some problems, but this
hardly seems a muwmerical concept. What is needed is a discrete mathemat-
ics to parallel and supplement our better known continuous mathematics.

It 15 well to keep in mind that much of the world of immediate
perception is discrete, and if one point of view must be held less
strange than the other, it i3 not evident that the contimmous-quantitative
is it. A good deal of tralning, such as four years of eagineering school,
is needed before a person will concentrate his attention only on variadbles
having & continuwus character. Yet, you may ask: if the discrete view of
the vorld is quite natursl and if we have an appropriate mathematics to
deal with it, why then is the child not taught this as well as the
traditional fielde? Many would say becsuse it is too difficult, too
advanced, and of too little use -~ and their arguments seem strong. For
example, there is its history of develomeﬁt. The ideas we shsll spesk
of ceame into being only toward the end of the last century -- thousands
of years alter Buclid froze elementary geometry and hundreds after the
calculus ves invented. No one vill deny that, once George Boole (1815-
1864) and G. Cantor (1845-1918) put forth these new concepts, they wvere
accepted as fundanental to all mathematical thought and that mathematics
(including that of continuous processes) was revolutionized; but many
vill point out how recent this develomment has been. Can a child be
expected to learn vhat the mathematical community could not develop until
50 years ago? Scme thipk yes.



The jideas are simple. They are so simple, so mmu, 80 much a
rart of our language and thinking that is hard to mealize that there
aight de a purpose served in abstracting them into a symbolie system.
Yet, as you will see, once the abstrections are pointed out, they are
clear and understandable -- in fact, you will often have the feeling
that you knew about this or that all along, but bad Just never troubled
to think it out clearly. And you will be right. Were the abstracting
the end of it, it would be banal; but that it is not, for once the
formslization is effected it assumes a life and yower of its own which
is far richer than will first seem possible.

The logical and clearest development of a sequence of ideas is
rarely, if ever, the historical one. Complex problems are recognized,
tackled, and often solved before the more basic and, retrospectively,
simpler problems are seen and resolved.

In these notes we ghall try to do three things. First, we hope
to give you some idea of the concepts which are available and where
you can find out more about them. We will draw heavily on your
unformulated experience in such matters and we shall not attempt to de
as careful about the niceties as would be necessary in a course in pure
mathematics. Second, we will delve into ome collection of ideas which
is particularly useful, sttempting to show reasonably explicitly how a
modern methematician thinks and works with such qualitative Problems
and vhat kinds of deductive steps are involved. T™is work vill be
somevhat more formal and may seem a bit taxing, but we will try to
build up to it fairly gradually. As puch as anything, your difficulties
will arise from our ordinary habit of reading into statements more or
less than they imply. One of the qualitiec of mathematics -- often,
though not always, a virtue -- is precision. Professionally, mathema-
ticians pride themselves on saying exactly what they mean and meaning
exactly vhat they say. MNor this reason, statements have to be taken
literally -- a curiously difficult thing to 4o, especially wvhen one
has an inadequate intuitive grasp of what is being done. Third, we



vill present several examples from the social sciences vhere interesting
results have been obtained by welding together a mmber of these almost
trite ideas. Eere you vill see some of the intellectusl pover which
arises from an adroit interveaving of the almost trivial. It is an
impressive feat once it is understood.

In all of this we wiil not stress manipulative skills; there is
pot time for that. We will feel successful if you gain some ides of
vhat the concepts are, wvhat they might be good for, and vhere more can
be found sbout them. Mor those wanting to learn more of the details &
limited number of general references will be scattered about the notes.
In addition, the foilowing books are basic references to the whole area:

Keweny, J. G., Snell, J. L., and Thompson, G. L., Introduction to
Finite Mathematics, Prentice Hall, in press (pxobable date of
publication: January 1957).

Kershner, R. B. and Wilcox, L. R., The Anatomy of Mathematics,
Ronald Press, New York (1950).

Stabler, E. R., An Introduction to Mathematical Thought, Addison-
Wesley, Cambridge (1953).

Wilder, R. L., Introduction to the Foundations of Mathematics,
Wiley, Kew York (1952).

Two basic texts of a mOre advanced character are:

Birkhoff, G., Iattice Theory, American Mathematical Society,
Bew York (1948).

Birkhoff, G. and Maclane, S., A Survey of Modern Algebrs, MacMillan,
Bew York (1946).

While wve cannot stress manipulatione, here; as in all rigeorous
disciplices, a real understanding does not usually result from just
reading and listening. The real import of the ideas and the fine shad-
ings of meaning do mot car.2 across until you try to work with them, which
means doing problems. For the most part we have chosen very simple ones,



out they won't seem so until the ideas are clearly grasped. These
should be vorked even when you feel that you have understood perfectly
vhaat you have read. If you have wnderstood, the cost in time of doing
them will be slight; and if you haven't, the gain will be great.

The starred sections and the passages in small print are a little
more difficult than the rest of the material. They may be omitted if
one chooses without causing later difficulties, for the rest of the
text 15 self contained without them. However, it is recommended that
they be read, posusibly on a second time around, for it is in these
sections that we go beyond the more elementary concepts and attempt
to show how something can be done with them.



CHAPTER I

1.1 INTRODUCTION

One of the simplest and most ubiquitous of mental operations is
recognition -- deciding whether an obJect of perception does or does
not possess certain characteristics and whether aslong some dimension
one object is the same as or different from another. Set theory uses
this as its starting point. One could doubt that such a trivial base
can lead to anything much in rarticular; and, yet, from it and the rules
of logic one can derive the whole of contemporary mathematics. Of
course, we will not attempt to do so here; we will only try to give
some of the elements of set theory and a few of the applications which
arise from it. In practice, these are the useful things to know, for
no mathematician traces back his work to the most fundamental formula-
tion; it is enough to know (or imagine) that it can be done.

Analogous situations exist in physins. It was important to show
that from the microscopic theory of gases, kinetic theory, it is
possible to derive macroscopic thermodynamics, but it would hardly make
sense for an engineer designing a heat exchanger to return to molecular
Principles. In the same way, it is completely uneconomical to do much
of every day mathematics by returning to set theory -- certeinly this is
true of most engineering and physics mathematics. And so most engineers
and physicists are not taught set theory. But, at present, when human
behavior is involved, most matbematical analyses do begin in & very
basic way. Possibly in the future an elaborate superstructure will te
constructed for the behavioral sciences and it will again be impractical
to retwrn to first principles, but this is not yet so.



1.2 MEMEERSEIP AND NOTATION

The concept of a get, or class, will be accepted as intuitively
known, or, as one says in mathematics, it is undefined. Though we shall
not attempt to analyze its meaning into more primitive terms, it would
be unkind not to attempt to aid the intuition by examples and suggestive
discussiorn. A set separates the universe into two parts: those things
in the set and those not in the set. Put another way, a set is deteimined
by a rule or property: those objects of perception which satisfy the rule
belong to the set, those which do not, do not belong to it. Consider
the property of bging human and exceeding six feet in height. This
defines a set which we might call the set of "tall people.” Given any
object whatsoever, one must decide, first, whether it is a human being
and, if so, whether that person is taller than six feet. There are two
acts of recognition required for each object.

The rule defirning a set can be almost anything, however weird,
provid>rd it meets one important condition. It must be possible to
decide for any obJject whether or not it satisfies the rule. The set
defined by such a rule is sometimes (redundantly) described as 'well
defined.” In a great deal of mathematics this stipulation is taken
pretty much for granted without explicit discussion; but it must never
be forgotten that it is a very stringent requirement, one not so easily
met in applications, particularly when people are involved. A person
is confronted with a mdiple choice question, i.e., one having a well
defined set of alternative answers. There is no problem in stating the
set of answers offered to him, or the answer he gives, but what of the
set of alternatives he actually considers before meking his choice? In
Judging his performance this may be crucial. You know this much: it
must include the snswer he actually chooses and it is bounded by the
available set of alternatives, but it could happen that he does not
consider all of them. Is it possible to decide whether a given alterna-
tive is or is not in the set he considers? No really effective way is
nov known to ascertain this, but that does not mean this will always be



s0. Wwe offer this exumple only as a warning that it is easy in practice
to suppose tacitly that a set is well defined, when ip fact it isn't.

For sets with a finite number of elements, the simplest, and
invariably unambigious, rule is to list ali the elements in the set.
For example, the set consisting of t' e three integers "one," "two," and
"eight” can be specified by listing them as {1,2,8}. A more bizarre
set having three elements is {this piece of paper, Queen Elizabeth's
coronation crown, the sur}. In each case, the order of writing the
several elements is immaterial, thus

[112!8]} Eliala}} {81112}) {832)]‘}} {2}8’l]) [21158)
all denote the same set.

Whenever one explicitly lists all the elements of a set, it is
conventicnal to surround the symbols for the elements by curly
brackets as we have done.

More generally, a set is characterized by some property possessed
by its elements and not possessed Ly any other objects. Such a rule
must always be used when descridbing a set having an infinite number of
elements. For exmnple, the set consisting of all numbers greater than
zero is called the'right half line.” (The term arises from the
geometrical representation of all numbers by & line.) The property
vhich specifies the elements in the set is "being a real number and
being greater than 0." Thus, 1, n, 1,036.24, etc. are in the set;

0, -1, -106, etc. are not. "The members of the Senate of the United
States on January 1, 1956" defines a set of 96 people wham one can list.
"The President of the United States in 1942" singles just one person,
and it affords an example of a set consisting of a single element. One
must distinguish between a set having but one element and the element

*Had we changed the date, say to 1945, this would not necessarily be the
case,



itself. Congress observes this nicety when, on occasion, it by-passes
the rule that it cannot write a law which numes and fires a person.

This it does by abolishing all jobs satisfying certain characteristies,
so choosing the characteristics that there is a single position -- held
by the man they wish to get -- satisfying them. Technically, Congress
bhas written the lav in terms of a set, not an element. RKotationally, if
a denotes an clement, then {a} denotes the set consisting of just that
elenment .

Observe that in our discussion there have really been three central
undefined concepts: set, element, and belongs to. These are related by
a particular element either belonging to or not belonging to a given set.
It is useful to be able to symbolize this primitive relationship briefly;
it is done as follows: If a is an element of, i.e., belongs to, the set
A, we write

8 € A.

In this context, the symbol € (Greek epsilon) can be read in a variety
of ways: belongs to, is an element of ar is a member of,

Thus, 2 1,2,8 , i.e, 2 is a membor of the set consisting of

1, 2, end 8. Sometimes we also want to say that "s is not a member of
the set B," and this we symbolize by

a ¢ B,

wvhere the slash means "not."” So we read ¢ as: does not belong to, is
not & element of, or is not & member of,

We now have notational ways of representing two things. First, ve
can symbolize a finite set by explicitly listing its elements:
(a,b,c,d). Second, if we have symbols for a set and an element, we
can symbolize that the element is or is not a member of the set: a8 € A,
a ¢ B. It would also be useful to have & symbolic way to represent a
set which is characterized by some rule or property, say property P.

o- T



It is conventional to denote (and that is all it is - a name) this
set by:

{x | x has property P}.

In this notation, x is a generic element of the pet being defined by
the property P, and the vertical bar is read "such that.” Thus, we
read the symbol as "the set of all elements x such that x has property
P." TFor example, the right half line mentioned above would be
presented as:

(x | x is a real mumber, x > 0).

Two conventions we have employed had best be made explicit. Im

so far as possible, capital lLatin letters will be used %to denote sets
and small ones to denote their elements, and the generic element of a
given set will often be symbolized by the same letter as the set, such
as & € A. We will not aiways be able to hold to these conventions since
sometimes sets are elements of other sets and a particular letter may
not be suitable for use as an element, but to the extent that we can we
will follow them.

A variety of synonyms exist for the word set. The most common, and
with some authors the preferred term, is class. Also used are aggregate,
collection, and family. There are some implicit conventions as to when
each is used, but we will not go into that here except to say that one
usually speaks of a class or collection of sets, rather than a set of

sets.
Problems
1-In two different ways, present symbolically the set of positive

integers vhich divide evenly into 12.

2-Display the set (x | is an integer, x° = x} in another way.

«l]la



3-Devise a property P which is meaningful for all integers, similar
to the one in problem 2, which allows the set {0} to be displayed
in the form {x | x has property P}. Do the same thing for the
set {1}.

1.3 SUBSETS

In & certain and somewhat facetious sense, one can characterize much
of modern mathematics as the generation of new sets from old. There is,
of course, much more to it than this, but constructing new sets having
special properties is always going on. As we proceed you will see how
this can be done with profit. Our first example of it s the formation
of subsets. For example, the set of all Republican Senators is &
subset of the set of all Senators. The executive personnel of General
Electric is a subset of its employees. The set of transformers produced
last week by General Electric is a subset of all its products for that
veek, and also a subset of all its products for all time past, and also
a subset of all transformers produced during the year, etec.

Formally, if A and B are each sets, A is a suhset of B if every
element of A is also an element of B. In each example you can see
that this is the case: a General Electric executive is also a General
Electric employee, etc. Of course, the converse is not gernerally true --
there are still employeer who are not executives.

If A is a subset of B, we then also say that B is & superset of A;
however, this term will be used much less often than "subset."”

Certain subsets are especially distinguished. Every set is a subset
of itself, for if A is a set and a € A then, repeating ourselves, a € A.
Often, we want to exclude this trivial case when talking of subsets, and
80 ve need & term to refer to subsets of & set which are different from
the set itself. The term used is proper subset.

Suppose a € A, then {a) is a subset of A. That is, each of the single



element sets formed from the elements of A is a subset of A.

One of the most useful sets, though at first it seems senseless, if
not silly, is the one (it can be shown to be unique) which has no
elements; it is called the empty or null set, The major reason for
introducing this apparently vacuous concept is this: you may set up a
certain property and discuss the set of elements having this property,
only later to discover that there were no elements satisfying it. It is
more convenient not to have to deal with this vacuous case any different-
ly from more substantial sets. The set of all United States Senators
under 25 years of age is an example. But, you will say, no one would
ever consider this set, for it is clearly emsty. Although that is true far
this example, there are other cases where the emptiness of the defining
characteristic is not nearly so evident. If you don't know much about
cats, to speak of tri-colored male cats does not seem unressonsble. ILater
we shall come to other reasons for introducing the null set.

Notationally, we shall denote the null set by (.

We observe that the empty set is a subset of every set, for every
element of @ is, by its non-existence, also an element of every other
set.

Once again, it will be convenient to have & short symbolism for
discussing subsets. TFor the phrase "A is & subset of B" we will write
A{ B. This symbolism is not just accidently similar to the "less than"
sign, < , for mumbers, for il A is a subset of B it is, in a sense,
"less than" B. However, one never says that, rather that A is a subset
of B or that A is included in B. The mark ( is known as the inclusion

symbol.

Actually, what we have been doing just now is making a definition,
8n let us summarize it formslly:

-13-

'Y



Definition: If A and B are sets, we say A is a subset of B, and
write AC B, if a € A implies a € B.

In terms of the inclusion symbol, we always have:
ACA; 9CA; and if a ¢ A, then {a) C A.

Not only will ve want to talk of specifi~ subsets of a set, but
also of the set of all subsets of & given set. For this too we want a
symbol. We could simply say that we will write 2™ for the set of sub-
sets of A, but it will be easier to rememiver this if we suggest how it
arose. Suppose that A is a finite set with the n elements ay, Bsecey 8
(the numbering of the subscripts does not maetter except that we hold it
fixed and that different elements have different subscripts). One way
of denoting a subset of A is as foliows: We ask if the first element,
8y, is present in the subset or not. If it is we write down a 1, if not
a O. Then we ask if the second one is in the subset, and ve write a 1 to
the right of our first number if it is, & O if it isn't. We continue the
process through all n elements, and in this way ve get a sequence of n
numbers, each either O or 1, which describes the subset. For example,
suppose n = 4, then the subset [ae,ah] is symbolized by Ol01. Similarly,
the single element set {33} is represented by 0010. We also note that
any such sequence of O's and 1's represents a subset, i.e., the binsary
numbers of length n correspond perfectly with the subsets of any finite
set of n elements. But it is easy to see that there arc 2® sueh numbers,
for there are two choices, O or 1, for each place and therare n places.
The symbol, then, for the set of subsets of A, EA, is suggested by the
pumber 2. This symbol is used even if A has an infinity of elements,
where the binary representation of the subsets might break down.

n

Formally,

2= (81 8C A}

-1k



As an exsmple, suppose A = {a,d,c}, then
2h = (4, (a,b),(a,c), (b,e), (a), (b, {c], §).

The distinction between the symbole € and C must be kept in mind,
for they are sometimes interchanged by novices. One can never be
directly substituted for the other, for € establishes a relation be-
tween an element and a set, whereas ( relates a set to a set. A few
examples will make this clear: If B A, then B € A 1rec A, then
(a) C A and {a) ¢ 2%

In set theory, just as in ordinary algebra, it is quite possible
to specify the same thing in several different ways; sometimes this is
done on purpose, sometimes inadvertently. In algebra, we may introduce
two apparently different numbers x and y, but by scwe chain of reasoning
come to the conclusion that they are the same number, in which case we
write x =y. Similarly, with sets we may think ve are defining two
different sets A and B only later to find that they have the same
elements -- that they are identical. In that case it seems appropriate
to extend the use of the equal sign and to write A = B. When you see
such an expression and A and B are sets, you must remember that numbers
are not involved at all; it simply means that the two sets A ed B have
exsctly the same elements, not just the same nuxber of elements.
Example: suppose A is defined to be the set consisting of the final
four words in the last sentence, and B is defined to be {elements,
number, same, of] , then A = B. Less trivial example: Let A be defined
to be the set of two people comprising the Democratic nominees for
President and Vice President in 1940 and B the President and Vice Presi-
dent in 1941, then it is known as an historical fact that A = B, though
it could have happened otherwise.

Note that if A = B, then A is included in B and B in A; and, converse-

ly, if both inclusion relations hold, the two sets must have the same
elements. This gives us an easy way formally to define equality:

-15-



Definition: If A and B are sets, we say they are equal, and write
A=B, if both A(C B and B C A.

This concept of equality has all the properties one usually
associates with equality among numbers, namely:

A=A (reflexive)
if A =B, then B = A (sympetric)
ifA=Band B=C, then A = C (transitive)

The terms in parantheses are standard for tnese three properties, and

they will be discussed more fully in Chapter 2, COme can immediately establish
that these properties hold from the fact that inclusiom is reflexive and
transitive :

ACcC
if ACB and BCC, then AC C,

(The reader should show this), These last two properties can be shown from the
definitim of inclusion, We have previously discussed and established the first
of these, Cansider the second: Suppose & € A, Since AC B, we lnow from the
dofinitim of inclusim that a € B, But since B C C, the same dafinitim
implies that a € G, But if a € A implies a € C, then AC_ C by definition,

In any particular discussion or problem, we will always restrict
ourselves in advance as to what elementis we want to talk sbout. In
other words, we will always spe~ify a universal set U at the start
which is chosen to include everything we shall want to mention. It
may seem strange to bound ourselves by such a convention, but in
practice it is an extremely useful device and it will also help us to
avoid certain logical difficulties (see next section). The practical
merit amounts to this: if you don't tell your listener what you are
talking about, he literally won't know except to the extent he can
infer it from your statements about the unknown universe of discourse.
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When we are dealing with basic ideas, this indirect method will be uged --
it is known as the axiomatic method. But when we are discussing kmown
elements and sets, it is important to specify which ones. Amateurs often
fail to ‘E:e explicit on this score, and it can be very tricky indeed to
decipher their later marks and symbols.

Problems

‘1-Let A denote the employees of a company, W the set of female
employees, E the set of executives, p the president, J a particular
male Jjanitor. State all relationships you can think of using
€ and C.

2-Write out all the subsets of {Jjanitor, president, set of women
employees] .

3-If A is a set having 3 elements, how many elements are there
in the set of subsets of 2" (which we shall denote by 2° )7
If A has n elements, how many are there in 2° ? How would you
denote the elements in 2 which are formed from single element
sets of 2A 7

L-Let A and B be finite sets. Show eAC 2P 1¢ and only if A B.
1.4 A PARADOX

The logical difficulties in set theory are famous, mainly because
they were so profoundly shocking to the mathematical community. Some
years after set theory was first introduced and when it was already
being widely used throughout mathematics, it was discovered that, by
using simple reasoning of a type generally employed in mathematical
arguments, deep inconsistencies could be exhibited. Since these
arguments do not differ from those used in everyday mathematics, which
bas had such rich and useful conclusions, much unease was generated.
And while a good deal of work has since occurred in the foundations
of mathematics, i, cannot yet be said that all is well. While we can-
not go into this work, it is easy to exhibit one of the parasdoxes.
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The one we shall describe is known as the Russell paradox, named
after its famed author Bertrand Russell. As ve have seen (e.g., the set
of all subsets of a given set) the elements of sets may themselves be
sets. Thus, a priori, there is the possibility that there is at least
one set which is an element of itself! While we have not exhibited such
a set, it is conceivable that one exists. In any case, let us call any
set not having this property, i.e., any set not having itself as an
e lement, an ordinary set. These we know do exist. Let W denote the
set of all ordinary sets. Question: is W itself ordinaxy?

One way to show that W is ordinary is to assume the contrary is true
and to show that this leads to a contradiction, i.e., to show the assump-
tion that W is not ordinary leads to an absurdity. Taois we do. If VW is
not ordinary, then by definition W is an element of itself. But, by
choice, all of the elements of W are ordinary sets, and so we have a
contradiction. Thus, we must conclude that the supposition is false and
that W is ordinary.

This seems fine. But suppose we had begun on the other tack of
trying to show that W is not ordinary by assuming it is ordinary and
arriving at a contradiction. If W is ordinary, then W is not an
element of itself according to the definition of an ordinary set. But
all ordinary sets are by choice included in W, and again we have s
contradiction. Thus, we must conclude that W is not ordinary.

The dilemma is clear: by well accepted deductive procedures we have
proved both that W is ordinary and not ordinary. The resolution is to
try, in one plousible way or another, to exclude W and other objects
like it from being classed as the same sort of sets as the ones which

are its elements. Tohis we cannot go into.
Two closely related pearadoxes whicih are easily remembered are these:

Consider the assertion " This sentence is false.” If you assume it is

true, then you can conclude it is false; if you assume it false, you can
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conclude it true. Consider the barber in a town who shaves everyone who
does not shave himself. Who shaves the barber?

For more discussion of the problems lying at the fcundstions of
mathematics, see Wilder's book mentioned in the Introduction.

1.5 UNION, INZRSECTION, AND COMPLEMENT

To the child and the mathematician there are certain natural
operations which can be carried out with sets. For the rest of us these
counceptual operations sgeem slightly illegal, for they are carefully out-
-awed during early schooling when the child is first introduced to another
basic notion, that of number. It is obvious to the child that he can
"add” a set of books that he has to a set of pencils he uses, for that
1s exactly what he does when he places them together in a bag to carry
them home. Sometimes he wants to treat the two sets as separate, other
tives as a unit. It depends upon his purpose. This certainly is not
the addition to which the teacher is addressing herself when she tells
him that he can only add "likes to likes" and that when he adds likes
they must not overlap. The difficulty she is trying to avoid can be
seen clearly by considering one set consisting of m books and n pencils
and another consisting of the same n pencils and p pads of paper. The
"logical sum" consists of the set of books, pencils, and pads, and it
has m + n + p elements in it, wvhereas the simple arithmetic sum of the
numbers of elements of the two sets gives the number
(m+n)+ (a+p)=m+2n+p.

Equally well, there is for sets something somewhat analogous to
multiplication, namely, the set of elements which are common to two
given sets. In the above example, the 1 pencils are in common. There
are people who are wvealthy and others who are smartc, and those who are
in common to the two sets are both wealthy and smart.

Suppose, then, that U is our universsl set and A and B are two of
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its subsets. We want to be able to symbolize the set of elements which
are either im A or in B or in both -- the snalogue of addition. There
are several symbols in use, the most common being AU Band A+ B. We
shall use the former to avoid confusion with numerical addition. So we
make the following

Definition: Let U be given and A, B U, then
AUB=(x]| xeAorxe B).

We speak of A U B as the union of A and B, or as A union B. The
term logical sum is also widely used, but we will avoid it.

Similarly, we want to denote the set of elements common to A and B,
80 ve make the following

Definition: Let U be given and A, B(C U, then
ANB= (x| xeAand x € B).

We speak of A N B as the intersection of A and B, or as A intersect
B. The term logical product is also used.

If one writes A + B instead of A U B, then it is customary to write
AB instead of A N B.

If in the above example we let A = {books, percils} and
B = {pencils, pads), then

A U B = {books, pencils, pads)
A n B = (pencils)}.

There is a very useial graphical device, known as & Venn disgram,
for thinking sbout these and more complex relations among subsets.



Whatever our sets may be, finite or infinite, we represent them in a
loose analogy by regions in the plane. Thus, we first select an
arbitrary region such as in Fig. 1 to represent the universal set U.
Then ve introduce subregions to represent our subsets, sometimes shading

Fg. 1 Fig. 2 Fig. 3

them for greater clarity. Thus, in Fig. 2 the whole shaded area
represents A U B, wvhile in Fig. 3 the shaded area is A N B.

Such diagrams can suggest a variety of questions. TFor example,
coasider the subsets indicated in Fig. 4. What ¢
sbout A N B? It 1s clear that there is no com- U /
mon region to shade, that they have no elements g’/ Bl ~
in cammon. In our previous terminology, A t B A / /
is the empty set. Here seems to be & case where (.
the empty set comes in handy, for it is nice always
to think of A N B as being a set, Just as A U B is Fig. &
alvays a set. As you might expect, we often have
to distinguish whether or not AN B = ¢ -- much as in ordinary algebra
we have to specify whether a number if different from zero or not. TFor

this reason a special term is irtroduced, namely: A and B are called

disjoint i£ AN B = &,

Au example may be illustrative. Suppose we take a&s our universal
set & list of corporate functioms which must be considered some execu-
tive's responsibility. Let each executive in a particular company list
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those functions for which he considers himself responsible. Thus, each
executive specifies a subset of the given universal set. It might be
considered desirable for each pair oY these subsefs to be disJoint,

since otherwise there would be overlapping responsibilities. Of course,
the example also suggests that there should be at least one executive
responsible for each function. That is, if we extend our idea of union
beyond Just two subsets (see below), the union of all these subsets should
be the universal set. A set of subsets having these twc properties -
every peir of subsets is disjoint apd every element of the universal

set is in one of the subsets - is known as a partitiunm of the universal
set. This is a useful concept and it will arise later in another context.

Another idea suggested by the Venn diagram is shown in Fig. 5. Here
we have shaded everything in U which is not in the

given subset A. This set, known as the complement
of A (with respect to U) will be symbolized by A. U
Formally,
Definition: Let U be given and A(C U, th.n Fig. 5

A={x | xe Uand x ¢ A}.

In this concept the role of the universal set is vital. Frequently we
will simply speak of the coumplement of a set, but it will always be
with implicit reference to a particular universal set. As you can see,
it is much more important to know the universal set when couplements
are mentioned than for unions and intersections, since in any universal
set which includes both A and B, AU Band AN B always refer to unique

sets but this is not true for complements.

The concept of complement can be generalized very easily to what
is known as the difference between two sets. The difference between
A and B, denoted by A-B, is simply the set of elements in A which &are

not in B, i.e., the set of elements common to A and the complement of

2o,
‘Y o~

_ ,



of B. See Fig. 6. So we are led to

Definition: Let U be given and A, B C U, then %" 5

A-B = A N B.

Probleas

1-In & Venn diagram with subsets A and B identify the following
subsets:

AuB; AnB; AnBE.
2-Zxpress the following subsets of U in simpler terms

P;0;,AA; A0 ; ANT; ¢ ; AuT; A-A; ANT .
1.6 OPERATIONS

Beginning with a universal set U and considering subsets we have
now introduced a mmber of "operations,” namely:

inclusion ACB
union AUB
intersection ANB
complementation A

di fference A - B.

It is plausible that there must be some interrelsations among these, Jjust
as in arithmetic there are relations among addition, multiplication,
less than, etc. The kinds of numerical properties wve have in mind are
these:

x (y+z2)=xy+x2; xy=yx; i2x>C and y < z, then xy < xz.

The question now is what relations hold among the operations for subsets.
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The easiest vay to suggest some of them, and later to gain an
understanding of the ones we shall state, is to see vhat happens on a
Venn diagram. A couple of examples will do. Suppose, first, thsat
A (C B. Then, what about A and B? (n a Venn diagram, A C B simply

means that the area representing A is included in the area representing
B, as shown in Fig. 7. Now, shade in the areas representing the comple-
ments of A and B, as in Fig. 8, and we see that B is included in X. Thus,
the theorem we conjecture (it is by no means proved just because one
special case holds) is: if AC B then BC A. We will prove it in a bit.

As a second example, let's ask what happens when you take the
complement of the union of two sets. In Fig. 9 the two sets A and B
are indicated and the region A U B 1s shaded. Presumably, we want to
express this as some operstions involving A, B, A, and B, if possible.
Let us drav A and B again, and shade in the areas representing A and 5,

s in Fig. 10. The area which has any shading at all represents
AU B, and that clearly is different from A U B. The area in which the
shading 1s cross hatched represents A f1 B, and ve see that is the same

as the shaded area in Fig. 9. Thus, in this case, we conjecture:
AUB=AnNB.
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We must stress that these diagrams only serve to suggest results;
they do not constitute proofs. The danger in generalizing from a few
special diagrams is either that we have managed to draw cases which
possess certain peculiarities or that we have avoided one or two
peculiar cases; in either event the conjecture will not hold in general.
To get a true proof it is necessary to go back to the definitions of the
operations in terms of elements in the sets and to verify that the two
8iles of an equality do in fact represent the same set. We shall prove
these two conjectures as illustrations of the method of proof.

Theorem If A(C B, then B( &.

Proof. By definition, B(C A if and only if a € B implies a € A. To
show this, we assume the contrary - namely, a ¢ Band a ¢ A - and
arrive at a contradiction. By definition of the complement, & ¢ A
implies a € A. Since by hypothesis, A C B, we may conclude from the
definition of inclusion that a € B. But, by definition of the comple-
ment, this contradicts our assumption that a € B; thus, we must conclude
that our tentative hypothesis a ¢ A is false. Hence B( A.

In the mathematical literature, such a preof would either not be
given -- the dangerous word "obvicus" being written in its stead -- or
would be given in much abbreviated form, e.g.: If a € B and & € A, then
since AC B, & ¢ B, a contradiction; hence B ( A.

Theorem A U B = A 1'B.

Proof. Ry the definition of equality, the assertion is equivalent to
the two inclusions,

AuUBC ANnS and AnBC AUB.

We prove each of these separately by supposing that we have an element in
the set to the left of the inclusion relation and then show it must also
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be in the set to the right. If a € A U B, then by definition of
complementation, a § A U B. Thus, by definition of the union, a ¢ A
and a ¢ B, or putting this in terms of complements, a € A and a ¢ B.

By definition of intersection, a € A N B, so by definition of inclusion,
the first inclusion relation is shown. To show the second, we suppose
a € AnB. Eliminating some of the steps, a f Aanda ¢ B, so

a fAUB, i.e., 8¢ AU B. The theorem is proved.

It turns out that there are a vast number of such relationships
among the several operations defined, each one of whisr: can be proved
in a manner similayr to that just used. We do not pro;use to prove any
more of these here; however, a few of the proofs will be given as
exercises. Rather, we shall present without proof a smsll, selected
set of true theorems. It is recommended that you draw the corresponding
Venn disgram in each case, for only by examining each result individual-
ly will you become familiar with its content. This is necessary, for we
will use them frow time to time.

The arrangement of the theorems into horizontal groupings is both
to make them easier to read and to indicate certain natural groupings.
The partial parallel listing will be discussed later. The terms in
parathenses to the right are standerd in this area.

let A, B, and C be any subset of a given upiversal set U.

1- AT A (reflexive)

2- i£ACBand BCC, then A(CC (transitive)

3- §CA 3'- ACU (universal bounds )

b- AU A=A b'- ANnA=A (1dempotent )

5S- AU B=BU A 5'- ANB=BNA (commutative )

6- AU (BU C) = 6'- An(BNnC)= (associative)
(AU B)u C (AnB)nc

7- An(BU C) = T'- Au (Bng) = {distributive)
(AanB)u (ANnC) (Au B) n (AU C)



8- gna=¢g 8'- UUA=UD

9- gUA=A 9'- UNA=A
10- AUA=U 10'- ANA=¢g (complementarity)
11- X0B=AnE l1'- AnNB=AUSB (dualization)
12- A=A {involution)
13- Esach of the following relations implies

the other two:

ACB, AnNB=A, AUB =B,

There are several points to be made. PFirst, you may wonder why we
ckoose to present Just these particular theorem: rather than some others.
First of all, there are others, e.g., U = @, if A B, then B( &, ete.
The reason is simply this: once these theorems have been proved by using
the basic definitions and arguing in terms of elements, then you need
never do that again. Any other true relation among subsets and these
operations can be proved directly from these theorems without recourse
to the basic definitions. Here is how it is done for the two examples

ve nentioned.
Theorem U = §f.

Proof. By theorem 10', UN U = @#. But by theorem 9', U N U = U.
Equating these yields the result.

Theorem If A(C B, then B(C A.

Proof. By theorem 13, A( B implies AN B = A. Taking complements and
using theorem 11', A=A NB=A UB. From theorem 5, A=A UB=F UL,
and so theorem 13 implies B C A.

Thus, if you learn these theorems, it is possible for you to prove
any true relationship involving subsets, union, intersection, complementa-
tion, and inclusion simply by manipulating them. It must, however, be
emphasized that this {s by no means the only set of theorems from which the
remainder can be derived; there are many such, but this seems to be a very
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useful one.

Second, we jlaced a nmumber of these theorems in parallel. Why?
Iryouv;ill exanine them carefully, you will see that each pair is in
a sense dual. Specifically, take any one of them and make the follow-
ing changes: replace each set by its complement (keeping in mind that
it can be proved tbat ¢ and U are complements of each other), interchange
union and intersectior symbols, and reverse the direction of any inclusion
relations. This will yield, in essence, the other theorem on the same
iine. TFor example, consider theorem 8, ¢ N A = #. Making the substitu-
tions yields U U A = U, which 15 almost, but not quite, theorem 8'. 1In
stating theorem 8', and many of the others, we have dropped the cowple-
mentation sign on the A's and B's which would have made the pairs perfect-
ly dual. The reason for this is that the sets are arbitrary, and we can
alvays insert A for A and have a true thecrem. Thus, to prove 8' in the
form stated, we should have begun with A in theorem 8, Aside from that,
there is a perfect duality.

Third, let us comment on each of the theorems so that you will
gain a fuller understanding of their meaning.

1 and 2 have already been discussed when inclusion was first
presented. (Section 1.3).

3-¢ C AC U simply states the fact that the empty set is & subset of
every set and that every set under discussion is & subset of the universal
set.

L-The idempotent laws, AU A = A and AN A = A, are quite different
from aaything you are familiar with from arithmetic. If you '"add" s
set to itself, you do not gain smything; if you ask what is comna be-

twveen a set and itself, you find it is just the set.

O5-The commutative laws say tas: wy. or3 & of forming union and
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intersections does not matter. This is just like ordinary arithmetic,
both for addition and multiplication. This rule seems so familiar that
we often take it tooc much for granted. There are important mathematical
systems -- important in applications -- where it does not hold. Matrix
multiplication is a case in point. Or 1f you devise an algebra for the
operations in a machine shop, which is possidble, not all operations will
cammte: to drill and then thread is hardly the same as to thread and
then drill.

6-The associative laws, A U(B ¢C) = (AU B) U C and
An(Bnc)=(AnB)NnC state that it does not matter how you form
unions of more than two sets or how you form intersections of them. It
does not apply to mixtures of unions and intersections! It is necessary
to have such a law, for both operations were defined on., Ior pairs of
sets. This rule is just like those in arithmetic, and here as there
one customarily drops the parentheses and simply writes AU BU C,
ANBNC, ete. But don't drop parentheses when there are mixtures of
the union and intersection symbols. The symbol A U B n C is ambigious.
Does it mean AU (BN C)or (AU B) n C? Draw a Venn diagram tc see how
different these are.

7-The distributitive laws tell you how to expand (or equslly, to
contract) mixtures of unions and intersections. If you think of union
as analogous to sum in arithmetic and intersection as analagous to
product, then the analogue of the first theorem is

x (y + z)= xy + xz,
vhjich is a property of mmbers. The analogue of theorem 7', however, is

x + (yx) = (x +y) (x + z),

which, of ccurse, is false. Thus, while there are some parallels to
ordinary srithaetic, they are by no means perfect.
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8 and 9-These are fairly straightforward: The null set has
nothing in common with any other set; any set adjoined to the uni-
versal set still yields the universal set; the null set adjoined to
any set does not alter 1t;'and any set has exactly itself in common
with the universal set.

10-This property of complements is obvious from the way they are
defined: a set and its comwplement have nothing in common and together
they exhaust the universal set, i.e., they form a partition of the
universal set.

11-We proved one half of theorem 11; but, as they are both very
important, you should explore the other with Venn diagrams. In words,
these theorems say that the complement of a union is the intersection
of the complements, and the complement of an intersection is the union
of the complements.

12-The complement of the complement of a set leaves the set
unchanged. In effect, this is a case of double negation leaving things

unchanged.

13-This theorem says, inessance; that ws have definedtoo many
concepts as primitive, that we have been redundant. We could, for
example, have only defined union and equality, and in terms of these
introduced intersection and inclusion. Other combinations are possible,
too. We did not do this because each of the concepts is in one way or
another so important and because the duality is so much clearer if they
are all involved. It is, nonetheless, well to keep theorem 13 in mind,
for it is often convenient to translate an inclusion relation into one
of the other two forms. We did this when proving A C B implies B &
from the theorems.

Most often these theorems are used to simplify expressions which
arise in problems involving sets, Just as in ordinary algebra you use
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the basic rules to simplify an expression of the form

(x+y)z+(x-2) (x+y) tox (x +y). Two examples will illustrate
this. Suppose the set (AN B) U B is given.

using theorem

—————

AnB)uB=(AUB)UB 11’
= (AUB)UB 12
=AU (BUB) | 6
=AU B. N
Similarly,

(AUBYN(RUB)=[(AUB)nAYU [(AU E) n B) 7

=[Rn(AuB)lulsn(auid] 51

= [ANA)U (AnB)) T
ul(Bna)u(snE))

=[0U(ANEB)]U(BnA) UG 10"

= (A nB)u(BnaA). 9

Problems

1-In a Venn diagram of sets A, B, and C, identify the following sets
(RUuB)nc; (AUBYN(AnB); (Anc)u(anid).
2-Represent the two expressions (A - B) - Cand A - (B - C) in terms
of A, B, C, and the operations , U, and N. Simplify as much as
possible.
3-Simplify the following expressions:
An(AuB); AU(ANnB); (RUB)NE (AnB)U(an B,

L-Using the basic definitiorns of union, intersection, complement,
and inciusion, prove theorems 7 and 11'.

5-FProve each of the following relations in two ways (by using
the basic definitions without recourse to theorems 1-13, and by
using theorems l-13 without ever comsidering an elements:

ANBCA and (A-B)UB=AUSB,
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1.7 SET FUNCTIONS

This section is really an aside here; logically it should not come
until near the end of the next chapter.  But because the fdea of a set
function enters near the beginning of the probability course, it seems
advisable to bring it in early here. In essence, all wve want to say now
is that in various ways sets ocm have numbers attached to them, md oftem
such numbers are of interest. For example, "attached" to any finite set
A is the mmber of its elements, which is usually denoted by | A |. For
example, | (1,5,11,65) | = 4. In addition, depending upon what A is and
vhat our purposes are, there may be other numbers. If A is a class of
students, their average grade is a number associated with A. Note that
it is actually associated with A as a whole, since it is an aversge grade,
and not to any of its elements - the students. If A is a set of banks,
there is a highest interest rade among the banke in A, and this is a
number attached to A. Indeed, all sorts of aggregated measures which
do not apply to individuals (people, banks, industries, countries, or
vhat have you) but do apply to sets of individuals are exsumples of what
ve mean.

Let us return for the moment to the number | A |, the number of
elements in a finite set. Suppose U is a finite universal set, then
for each subset A, the numwber | A | is defined. In & way, this yields
sowething like a function in the calculus or in algebra, something like
x° or log x or sin x. With these more familiar functions one has an
independent variable x, which ranges over the real numbers, and to each
value of x another mumber is assigned. In amalogy, we take a gemeric
subsel A of U ss the independent variable, which ranges over all the
subsets of U, 1.e., over EU, and to each value of the independent
variable - to each subset - a number is assigned, | A |. This may
seem to be stretching the usual terminology for functions pretty far,
especially since we don't seem to bhave any formulas to work with as
in algebra or trigonometry. We'll come back to this question of
formilas later, for things are not quite as they seem. For now, it



vill suffice to say that a number of useful things can be done with such
an extended idea of & function.

In summkxy, then, if U is any set, a real-valued set function is any
assigmeent of numbers to the subsets of V.

Frobably the most widely used set fimctions are tucse arising in the
theory of probability.Although we shall not delve into this here,a simple
exasple will suggest how they arise. If a die is thrown only once,
there are six possible outcomes: either a 1, or a 2, or.... or a 6 will
come up. Thus, ve may take U = (1,2,3,4,5.6) as the set of primitive
events, one of which will occur. Suppose ve assume that the die is
perfectly balanced, so the probability of esch of these events occurring
18 1/6. Kow, we can also consider somevhat more complicated events,
for instance let us say that the event A has occurred if the die comes
up either 1,3,4 or 6, and not if either 2 or 5 appears. We see that A
is & subset of U, namely (1,3,4,6). The event A has a certain probadil-
ity of occurring which can be computed from the basic probabilities; it
is, of cowse, 4/6. In a similar way we csn assign probabilities to
each of the possible complex events, i.e., to each of the subsets U.

This set function, and others like it, are known as probability measures.
Of course, in more general contexts the events are far more complex and
the assigmuents of probabilities are not o simple, but this example
illustrates the general case reasonably well.

By and large, the functions of interest in algebra and trigonometry
have very restrictive yroperties. For example, a central property of
the iogarithm is that

log (w) = log x + log ¥.

Most of the functions which arise from theoretical considerations in
physics are not highly arbitrary assigmments of one variable to another,
but are strongly constrained in one way or another. 1In fact, these



constraints are vital to much of the computational power characteristic
of physics. It is similarly true that when the concept of a function

is generalized to set functions, or to even more genersl functions, we
still will be most interested ifi those vhich-possess various sorts of
inner constraints. Roughly, the value of the function at one argument
will bde closely related to its values at other arguments which are them-
selves related to the first argument, as, for example, x, y, and xy were
related above. Consider the function: the number of elements in s
subset. It can be shown that

|AuB|=|A}|l+]|B]-]AanB].

When a set function arises, one must always be on the outlook for such
relationships, for they can be most important.

This vhole topic will be resumed and discussed more fully in Chapter 3,

Problems
i1-Prove | AUB|=|A|+|B|-]|AanB]|.
2-show | AUBUC | =|Aaf+|B|]+]Cc|-jAanB]-]anc|

-|Bnc|+]|AnBncC|.
3-Give an example of & non-triviasl industrial set function.

b-poes | A | = | B| imply A=B? Does A=Bimply | A| = | B |?
1.8 ALGEBRAS OF SETS

So far we have tacitly assumed that once a universal set is given,
we will be interested in all of its subsets. This, however, is not
always the case in practice -- certain subsets may for one reasom or
another be distinguished as important, others not. Consider U to be the
employees of a company. Most of the possible subsets would have little
or no functional meaning in the operation of the company, and so will not
receive any attention as wholes. But others will be treated as whole
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units for at least some purposes. For example, the subsets corresponding
.to departments in the company may be importent. If so, then it usually
follows that the people (if there are ay) commm to two departmants are
also important -- they may have more power or information than the other
members of their departments. Also the subset which consists of the
union of two departments presumably is an important unit. For example,
they may form an operating coalition against the rest of the company.
Finally, if one isolates a department as important, then its corporate
environment -- sll the rest of the company -- also bears conmsideration.
In other words, if ve single out a class of subsets as important, it is
more than reasonable for us to include their unions, intersections, amd
complements as also important. But why stop at this level? What of
the unions, intersections, and complements of these new sets, and so on.
Eventually, this process will stop in the sense that any '"new" union,
intersection, or complement is not really new; it is one of the subsets
already included. At first, one may think that this procedure would
necessarily generate all the possible subsets of U, but this is by no
means necessarily so. For example, if we begin only with the subsets

$ and U, we vill never get more than these %wo sets. In the industrial
exarple, we will only get subsets of people closely related to depart-
nental lines, and not many of the crazy subsets which criss-cross
departoents without any rhyme or reason.

The important thing to notice is that in filling out one of these
classes of subsets, we stop when the following properties are met: the
union of any two sets from the class is sgain in the class, the inter-
section of any two sets from the class is agsin in the class, and the
cotplement of any set from the class is also in the clsss. In other
words, the class is closed under the operations of union, intersection,
and complementation -- closed in the sense that we cannot get outside
it by means of these three operations. This is a very familiar property
of many systems we know: the sum of two nuubers is again a number, i.e.,
numbers are closed under addition; the vectorial composition of two
forces is again a force; etc. By and large in mathematics we are
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interested in operations which are closed, for then we are free to
perform the operations whenever we like without concerning ourselves
whether we will get outside the set of elements we are interested in.

So in sumiary, we make the following:
Definition: Let K be a class of subsets of a given set U. K is

an slgebra of sets if whenever A € L and Be £, then AU B ¢
ANBc K and A € £.

As suggested above, {§, U]} is an algebra of sets -- the smallest
one. This is easily verified.

Suppose we know that we want a particular non-empty proper subset A
of U to be in an algebra of sets, but so far as we are concerned it does
not matter if any other subset is in L. Then, we might look for the
smallest algebra of sets which contains A. We know that if A ¢ £, then
R € £, 8> we have to have at least (A, A, $, U). The question is: do
we have to add on anything more? No, as you can easily check by applying
the definition: {A, R, §, U) is, indeed, an algebra of sets.

Of course, the set of all subsets of U is also an algebra of sets --
the largest possible for U ~-- since any set operation on subsets of U
yields a subset of U.

Given any arbitrary class of subsets of U, it is always possible to
find the smallest (it is unique!) algebra of sets contsining the given
class.

Problems

l-Let U= {&, b, ¢, 4d}. Construct the smallest algebra of sets
containing {8} and {a&, b)}. Construct the smallest one containing
{a} and (b, ¢}. Compare these two.
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2-Let A, BC U. Show that the smallest algebra of sets containing
A and B is the same as the smallest one containing A, AU B, and
A N B.

3-Let £ and B be two algebras of subsets of U. If £C ¥ show that
for each A € £ there exists a B ¢ J such that A ( B.

1.9 LEGISIATIVE SCHEMES

Legislstive bodies and committees ¢hat reach decis.ons by voting
according to fixed legislative schemes are an ever present part of
modern western life. For the most part, they tend to be organized along
traditional tested lines, such as sinple majority rule where each person
has a single vote. But in some cases, new quirks are suggested and
scmetimes adopted -- an important case in recent history being the
Security Council of the United Nations, where a crude attempt was made
to reflect the differential power among the nations. Even the now
traditional congressicnal system of the United States included some
variations which had not been tried when it was first adopted. There is‘
often some ambiguity about what a new set of verbal rules implies far the
actual operation of a legislature, and the problem is whether we can
devise a systematic way to see through the verbal formulation of a voting
scheme to its actual implications. In this section, we propose to use
the tools so far introduced to lay the ground work for one such analysis,
and then in Chapter 3, when we have still mcre tools, we will present and
criticize that analysic.

A legislative scheme, in contrast to a legislature which refers to
the specific people with all their peculiarities and affiliations working
within a scheme, is a system of rules which state the conditions under
vhich a bill (or motion or what have you) is passed. Ignoring some
special classes of bills (treaties, for exsmple) and the problem of
ties, the rule which characterizes the United States legislative scheme
is this: a bill is psssed either if a simple majority in each house of
Congress and the President votes for it, or if a two-thirds majority in
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each house of Congress votes for it. The scheme is given abstractly
without any reference to who is in the legislature, what forces are
acting upon them, what party structure there is, ete. To be sure, all
of these and more are important facts to know when trying to wmderstand
the behavior of a particular legislature, but they are quite irrelevant
in evaluating or understanding the scheme itself.

As a result, we shall want to deal with legislative roles, not
legislators. Thus, we suppose U is the set of legislative roles.
Then, the legislative scheme singles out certain subsets of U as able
to pass a bill. We shall call these subsets winning coalitions --
coalitions to emphasize the cooperative nature of the process. All
other conceivable coalitions are unable to pass a bill and so they are

called losing. Thus, a legislative scheme, which is uwsually given in
the form of verbal rules, is equivalent to listing the winning coalitions,
U

i.e., to giving a subset W of 2.

A few seconds thought will indicate that not just any old subset of
2U'will_do as ¢ possible legislative scheme. There are certain character-
istics common to all legislative schemes which serve to put constraints
on the possible subsets of 2“. First, there is always at least one way
that a bill can be passed, so W must not be the empty set. Second, it
would never do to have both & set A and 1ts complement, A, both winning
coalitione, for then both the bill and its negative could be passed. All
known schemes avoid this possibility. Third, the addition of more votes
to an already winning coaslition always results in a winning coalition.
There is no logical necessity for this condition, and not having it
woul. surely make legislative bargaining & more exciting and subtle
activity than at present, but it always seems to be met and it has s

certain compelling ethical quality.
These we shall take as the conditions characterizing a legislative

scheme. DBut, you may protest, there are a number of other conditions
which seem just as basic -- at least, they are found in all legislative
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schemes. For example, the empty set is always losing, a subset of &
losing coalition is always losing, two disjoint coalitions cannot both
be winning, etc. These, as we shall see, follow logically from the ones
we have singled out. Furthermore, it is our contention that any new
condition you propose is either a logical consequence of the ones we
shall assume or we can find an example of a legislative scheme where

it does not hold.

Let us summarize all of this compactly as a definition.

Definition: Let U be & given finite set, W( 2°, and L = 2V - W.
We shall say that W is a legisiative scheme if these conditions are

met :

1. W£§,

i1. if A €W, then A ¢ L,
iii. ifAeWand AC B, then Be V.

While this is not a very rich mathematical structure, still it is
possible to prove a few trivial theorems of the sort mentioned above.
We shall list five and prove the first three; the last two are presented
as problems.

Theorem 1- U e W

Proof. Since by i, W # @, there exists some A € W. But A C U, so by
111, U € W.

Theorem 2- @ € L.
Proof. By theorem 1, Ue W, so by 11, =T ¢ L.

Theorem 3- If A € L and BC A, then B € L.
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Proof. Suppose, on the contrary, B € W, then since B A, iii implies
A €eW. This is conirary to the hypothesis that A€ L, so B € L.

Theorem 4- If A, B € W, then A N B # §.

Although we have demanded what the complememt of & winning coalitim
be losing, we certainly have not made the assumption that the complement

of a losing coalition must be winning. In many schemes, such as simple
majority rule with an odd number of participants, it is true; in others,
however, it is not. In the Security Council it is quite possible to
have two factions each of which is able to block the passage of a
motion. For this reason, the coalitions in the set

B=[A|]AcLanddA el ]

are called blocking coalitions.

Theorem 5- B # L.

The main purpose of formulating legislative schemes mathematically
is certainly not to prove such theorems as these -- they are much too
trivial to be of any interest in and of themselves. Rather, we want
to lay out in abstract form what one can mean by such & scheme so as
better to be able to see the implications of a particular schewme and to
compare several competing schemes. Once it is seen as a mathematical
system, then one can use mathematical techriques and reasoning to get at
the implications involved. As an example, consider the following
schemes ;

l-a three-man committee in which each person has one vote and the
the decisions are reached according to majority rule; and

2-a three-man committee in which man 1 has two voter, and each of
the other two men have a single vote. Decisions are made
according to majority rule, except that when there are ties
man 2 breaks the deadlock. (Such a scheme might arise if each
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of the men represented a faction, and it was deemed that the first
faction wvas stronger than either of the other two, aad the second
vas somewhat stronger than the third,)

It is perfectly evident that the first scheme is egalitarian, giving
each member of the committee equal weight. The second scheme is equally
clearly not egalitarian: the third man is in a fary weake:r position than
the other two. It is not guite clear intuitively how much better off
man 1 is than man 2, for although 1 has two votes, 2 cam Wresk ties,
These differences are intuitively clear and the way to show it
conclusively is, of course, to loock at the winning coalitions. 1In
scheme 1 they obviously are

W= {(l; 2], {l, 3]: (ep 3]; {l, 2, 3]]-

In scheme 2, we must look more carefully. There is here the possibility
that the one man coalition {1) may be winning. However, against {2, 3}
that would result in a tie, which 2 breaks, so {2, 3} is winning and {1}
is not. It is easy to see that {1, 2) and {1, 3} are also winning, and
so, of course, is {1, 2, 3). But this is the same set of winning
coalitions, sc in point of fact these two apparently different sets of
rules are identical.

If you look back at the rules, you will immediately see through them,
but the point is that you probably didn't at first. As the size cf the
comnittee incresses and as the rules are made more complex, it is less
and less likely that one will be able to see their implications unless
he carries out some sort of formal analysis. Simply listing the winning
coalitions is one way. This can be tedious however. 1In Chapter 3 we
will describe a general formal analysis which is applicable to the a
priori evaluaticn of power in a legislative scheme and in a wide variety
of other somewhat related situations.

The remainder of this section is devoted to laying the background
for these pursuits and as an illustration of the use of set functions.
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Suppose ve attach the number 1 to each of the winmning coalitions in a
legislative scheme and the mmber O to the losing coalitions, then we
bave a set function which is simply equivalent to stating the winning
coalitions. Formmlly, such a function would be introduced as follows:

1, LA€W
v (A)= .
0, ifA €L

This function v will be known as the characteristic function of the
legislative scheme W. Since we imposed some restrictive conditions
on W, it must follow that v also meets some restrictive conditions.
We could state a whole variety of them, but they would not all be
independent of each other. So we shall choose a particular set of
three which are fairly standard in literature, namely:

i.v (¢) = 0,
i1. v (U) =1,
114. 1f A and B are disjoint,
v (AU B)>v (&) + v (B).

These we prove: The first follows from theorem 2 above. The second is
an icmediate consequence of theorem 1. The third is slightly more
complicated. If A and B are both losing, the right side v (A) + v (B) =
80 the inequality or the equality holds. If they are not both losing,
then by theorem U4 only one is winning, and by condition iii on W,

AU B is winning. So in that case, v (AU B) =1 =1v (A) + v (B);
hence the equality holds.

We claim that no other conditions independent of these follow from
the assumptions about W. To show this, we will prove that any set
function having values only O and 1 and meeting these conditions defines
a legislative scheme if we take W = [A | v (A) = 1].
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i. Wy @, since v(U) = 1 implies U € W.
14. If A € Wand 4 € W, then v(A) =1 = v(&), and so
l=v{U)=v(AUA)>v(A) + v(K) =1 + 1 = 2,
but this is impossible. Thus, ve must conclude that Aor A € L.
iii. Suppose A € W and A B. From the properties of sets it is easy
to show that B= AU (B - A) and that AN (B - A) = ¢ , so
v(B) =viAa U (B-A)I>v(A) + v(B - A)>1.
but since v assumes only the values O and 1, this means v(B) = 1,
hence B € W.

Thus, the idea of a le islative scheme and of a set function with values

O and 1 and meeting these three conditions are essentially the same. One
virtue in noting this identity is that we have transformed owr qualitative
problem into one involving numbers, and 80 we may be able to use some of
the quantitative mathematics about which so mich is known.

It also turns out that we have arrived at some conditions on this set
function which are extremely important in a part of game theory. From
time to time we shall mention parts of game theory as illustrative of an
application of some of our mathematical ideas, sud, in fact, before we
are done we will have sketched some of its central features. The central
problem studied in game theory is this: several people -- called play-
ers -- are in a situstion where each has a nuﬁber of possible courses of
action. Depending upon which courses are elected by the seversl players,
there will be different consequences for them. Eaca player is supposed
to have preferences (not in general the same pattern of preferences for
all the players) among these consequences, and he is assumed to try to
select his action so as to get what he wants. The complication for him,
and for the theory builder, is that his outcome depends not only upon
what chcice he makes, but upon the choices of each of the others. The
only information he has about the other players is their preference
patterns and that they too are trying to choose their action so as to
get what they want. The problem is to use this information to guide
action and to predict what will happen.
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At present the theory divides into several parts. Ome important
distinction is whether there are omly two or more than two players.
And vhen there are more than two, another distinction is whether they
are free to cooperate with one snother if they wish or not. In the
case vhere cooperation is permissable, one proceeds as follows: Suppose
that & coalition A -- & subset A of the set of all players -- elects to
form and to cooperate, then it will be faced by some sort of opposition
from the other players. The worst possible case it can meet is if the
remaining players, A, also form a coalition; this is the worst because
A can do everything, and possibly more, than any less unified opposition.
So a conservative evaluation of A's strength is obtained by examining
the two "person” game which results when A and A are pltted ageinst one
another. Using the theory of two person games, which we shall not go
into here, it is possible to obtain s suitable nmumerical measure of this
strength; this number we denote by v(A). If this number is computed for
each possidle coalition, then a real valued set function v results. It
is known as the characteristic function of the game.

If is not by coincidence that we have used the same symbol and name
for this function as for the one introduced in connection with a legisla-
tive scheme, for it can be shown mathemstically that the characteristic
function of any game must meet two, and only two conditions:

i. v(g) = o,
1i. 1f A and B are disjoint subsets of U,
v(A U B) > v(A) + v(B).

These conditions say, in effect, that the mull set has no strength, and
that the union of two disjoint coalitions is never weaker than the sum
of the strengths of these two coalitions taken separately. The union
can do everything the separate coalitions can, and possibly more.

It is not unreasonable that a measure of the strategic possibilities

in a legislative scheme should be a8 special case of suck s measure for
games in general, since voting on bills is a conflict of interest
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problem which ought to be encompassed in some fashion by the theory of
cooperative ganes.

We will not try to push these ideas any further now, for we are in
need of more tools. In Chapter 3 we will continue our program of evalu-
ating the power structure of legislative schemes; however, there is no
reason to restrict it to that special case, so we shall cast it in the
framevork of general characteristic functions.

Problems

1-Prove theorem 4: if A, B € W, then AN B # ¢.
2-Prove theorem 5: B # L.

3-Examine the following legislative schemes by presenting the sets
W, L, and B:

a-a2 four man committee {a,b,c,d} in which they have 2, 1, 1, and
2 votes, respectively, under majority rule, and where man b car
can break ties. Note this is case 2 above of a three man
committee with a two vote fourth man added. What has happened
to man 3%

b-{a,b,c,d} in which they have 4, 3, 2, 1 votes, respectively,
under majority rule, and where the chajrman can break ties.
Show that securing the chairmanship is equivelent to obtaining
an additional vote.

c-{a,b,c,d,e} in which they have 1, 1, 1, 3, and 5 votes, respec-

tively, under majority rule; man a has veto power which can be
overridden by & 2/3 majority.
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CHAPTER II

RELATIONS, ORDERINGS, AND FUNCTIONS

2.1 PRODUCT SETS

Having explored soamething of the generation of new sets Trom old
by selecting smaller sets ~-- subsets -- from a given set, we turn in
this chapter to questions of building up larger sets from two or more
smaller ones. An suiomobile manufacturer may advertise that his cars
come in ten colors and six models, giving the customer a choice from
awong 60 combinations. It is obviously much more compect to list the
set of ten colors and the set of six models separately than to list all
60 combinations. Similarly, & memu listing ten appetizers, three soups,
twenty entrees, five vegetables, ten desserts, and four beverages offers
the diner a choice from among 120,000 complete medns . Only the paper
industry could want this set listed in explicit detail. Everyvhere you
look you will find enormous sets presented compactly as several much
smaller sets with the indication that the overall set is generated by
making a single choice from each of the simpler sets. Each of these 'is
an example of what is known in mathematics as the product of several
sets.

The easiest case to deal with is only two sets A and B. Then the
set of elements of the form (a,b), where a ¢ Aand b € B, is known as
the (Cartesian) product of A and B; it is denoted by the symbol
A >< B. In order to encompass the menu and many other examples, we
mst define this concept for more than two sets. For that example we
have se.s A (standing for appetizers), S (for soups), E, V, D, and B,
and the set of all possible meals, A >X S > E XX V > D > B,
consists of all possible elements of the form (a,s,e,v,d,b), where
a € A, s €S, etc. In general when you have more than two sets it is
kind of messy and, if there are enough of them, taxing to use totally
different symbols for each. So it is customary use & single generic
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symbol for sll the sets and to differentiste among them by indices. If
there are n sets, it is simplest to index them Al, A2, csey An Using
this notation, then we can make the following genersl

Definition: Let the sets A, Ay, ..., A be given. The (Cartesian)
product of these n sets is defined as

> A, ><..>< A_= {(a,,8,,...,8_) | &, €A, 8, €A, ,...,a_¢€ A}
n D S n 1 2 2 n n

n
The symbol on the left is often abbreviated by ,I,A

=

It is important to realize that a definite order is involved in the
several entries of the elements of the product space. The first entry
is alvays filled by an element from Al, and not from any of the other
sets, the second from AE’ and so on. This is not to say that the same
element might not be in two or more of the sets, or indeed that several
of the sets may not be identical, but rather that they are distinguished
as playing different r .»s by their ordering in the product set. The
fruit cup in the set of appetizers is distinguished from the fruit cup
in the set of desserts only by being in the one set rather than the

oOther.

In engineering and physical problems one Y
product space is almost painfully familiar, namely
the coordinate system drawn in F{g. 11. To see
that this is & product space, let X denote the set
of points on the x axis and Y the set of points on
on the y axis, then the set of points in the whole
Plane specified by these axes is simply X >< Y. If
wve want to work with a three dimensional Euclidean space, then we add the
third coordinate Z and the whole space is X >< ¥ >< 2, Clearly, this can
be generalized to n dimensions. Since in physics it is often useful to
think of the point (x,y) in the plane as specifying & vector from the
origin to that point, it is custocmary to call the elements of

Fg. 11
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x1 > xe >, xn, vhere each of the xi are the sets of real numbers,
(n-dimensional) vectors. The term n-tuple is also widely used.

If S = Al > A2 >0 X An, then we speak of each Ai as a component
of the product set S. Components play much the same role as the
coordinates of u geometrical space, though, of course, they need not be
the number system or any other particular set. Since we know that the
coordinates of a geometrical space are not unique -- any rigid rotation
will do Just as well -- we cannot in general expect a product space to
have & unique decamposition into components.

Problems

1-Present a non-trivial industrial example of a product space.

2-let A = {male, female}, B = {old, young), and C ={skilled, unskilled).
Write out all of the elements in A >< Band in A ><X B >< C.

3-Using the same sets as in problem 2, express the following set
(wvhich, in words, comsists of all categories of old workers) in the
most compact way that you can: {(male, old, skilled), (male, old,
unskilled), (female, old, skilled), (female, old, unskilleds].

b-Suppose S =A> Band T = C > D. What does it mean if someone
asserts S =T 7

5-Suppose A = {0,1,2,3,4,5,6,7,8,9}. Where have you seen A >< A
arise?

2.2 RELATIONS

The familiar term "relationship" connotes a whole class of
properties which relste one individual to anocther individual of the
same general type -- those properties X which appear (at least
implicitly) in sentences of the form "a has the relationship X to b."
For example, Mr. Smith is & superior of Mr. Jones. Here the relation-
ship is "is a superior of" and it holds among people. Other common
examples of relationships are "likes” between people "is in a state of
war with" between countries, "is less than" between numbers, "is the



mother of" between people, etc.

The crucial features about these examples seem to be three: First,
a relationship holds between pairs of things of the same general type.
Second, it generally holds only between some pairs, and not between
others. For example, 'mother of" holds only between certain selected
pairs, namely: each mother and her daughters and sons. Third, sometimes
the order in which the two elements are taken matters: if Jane is the
mother of Mary, then Mary is not the mother of Jane. In other cases,
the order may not matter, such as "in a state of war."

Suppose a set A is given and that R denotes & relationship, i.e., a
property which may or may not hold between ordered pairs of elements.
If a,b € A, let us write aRb if the relationship holds fyrom a to b. If
it does pot :lold, we write aRb. The list of all pairs (a,b) such that
akb is said to be the relation on A induced by the relationship R.
Actually, we will use the same symbol R to denote both the relation on
A and the relationship which induces it; there is & slight ambiguity here,
but it is not really serious.

But what is a listing of all these pairs (a,b)? Simply a subset of
A > A. It is the subset which is singled out by the given property R.
Conversely, iven any subset of A < A one can always find s relation-
ship which singles it out. Thus, we are led to the following

Definition: An (abstract binary) relation over & given set A is &
subset of A > A. If R denotes the relatiocn, i.e., subset of A >< A
we write aRb if (a,b) ¢ Rand aRb if (s,b) ¢ R.

2

The prefix 'binary” to the word relation is needed because we choose
to deal only with pairs of elements; there are, of course, trinary
relations (subsets of A > A >< A), etc., but these seem to be of con-
siderably less importance. The word "mbstract’ is also prefixed because
we have not specified the property which singles out the subset R of



A ><A. For a given set A, it can easily bappen that two quite
distinct relatiomships single out the same subset, in which case we
bhave two different realizations of the same abstract relastion. For a
specific set of people, it is entirely possible for the relationships
"is a friend of" and 'works with" to be idenmtical, though in general
they are distinct.

Problems

1-let A = {United States, Great Britian, Germany, Japan, Russia).
Write out the relation " was at war in 1944 with" over A; the
same thing in 1939.

2-Can you see how to treat a business flow chart and en organ-
izational diagram es a -elation? Give a simple example with
which you are familiar, explicitly stating what relationship
is involved and what the relation is.

2.3 THREE IMPORTANT SPECIAL PROFERTIES

Here, as almost everywhere in mathematics, one continuslly has his
eye out for the recurrence of the same general property in & number of
important relations. If such a property is detected, it is often useful
to isolete it and to see how il interlocks with others you already know
about. We have done a little of this sort of thing before, e.g., when
we isolated those classes of subsets called algebras of sets. And we
will continue to do it. 1In this section we shall be concerned with
three general requirements on relations which have loomed very‘important

in methemstices.

First, we shall consider relations in which aRe holds for every
& € A. This is true for the relation "less than or equal to" between
numbers. It holds by virtue of the fact a =g, so, trivially, a > a.
It 13 true for the relationship "lives in the same house as,” since &
person certainly does live in the same house as he does. It is so
tautological in these cases, one might begin to wonder if it doesn't
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always hold, but "mother of" quickly dispells that conjecture. In that
relationship, not only does aRa fail for at least one a € A, but aRa for
every & € A. The same is true for '"greater than" between numbers. Still
other relations have aRa for some a € A, and aRa for the remainder. An
example is the relationship '"depreciates,” for some people depreciate

themselves, others do not.

Definition: Let R be a relation on the set A. R is said to be
reflexive if aRa for all a € A; it 1s said to be irreflexive if

aRa for all a € A; and it is said to be non-reflexive otherwise.

In these terms, 'less than or equal to" and "lives in the same house
" are reflexive; "mother of" irreflexive; and 'depreciates” is in
general non-reflexive. It will be recalled that we spoke earlier of
inclusion among subsets as being reflexive. This is compatible with
the present definition since it is easy to see that inclusion among the

subsets of U is a relation on 2U which 1s reflexive.

In a good many applications, it is a question of comvention,
convenience, or taste whether or not to interpret a relation as reflexive.
For the relationship "is in a state of war with" one must decide whether
to treat a civil war or & revolution as a war hetween a8 country and it-
self. For "communicates to" shall we say & person communicates to him-
self or not? If we say that "a is the brother of b" when a and b have
the same parents, then 'brother of"” is reflexive, but we would just as
easily define it so that it is irreflexive. A certain smount of judgment
is sometimes needed in these ambiguous cases.

We turn to the next genei.l category of relations. Earlier we
emphasized that generally the order in which we write the elements
involved in a relation is material, that aRo is quite a different thing
from bRa. Think of "greater than"” or "mother of." But for some re-
lationships the order doesn't really matter; there is a perfect symmetry.
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"Lives in the same house as" is a case in point: if & lives in the
same house &8s b, then b lives in the same house as a. Other examples
are: "equality" between numbers or between sets, "is married to," and
"is the same size as.” On the other hand, there are relations like
"mother of" where if aRb we know definitely that bRa. Still others are
of a mixed quality.

Definition: Let R be a relation on the set A. R is said to be
sympetric if whenever aRb holds, so does bRa; it is said to be

anti-symmetric if whenever aRb holds, bRa; and it is said to be
non-symmelric otherwise.

The third ilmportant property, which we have already run into with
inclusion, is typified by any comparative concept such as "larger than':
if a is larger than b, and b is larger than ¢, then we know that a is
larger than c¢. This is true of set inclusion, of 'greater than or equal
to,"” of "lives in the same house as," etc. The other extreme would, of
course, be a relation where if aRb and bRc, then we would know with
certainty that aRc. For example, if a is the mother of b and b the
mother of ¢, then a is the grandmother of ¢, and so not the mother of
¢. In general, "in a state of war with" satisfies the same condition,
but there are exceptions, as when Communist China, Nationalist China,
and Japan were mutually at war -- at least to all intents -- in the
middle forties.

Definition: Iet R be a relation on the set A. R is said to be
transitive if aRb and bRc always imply aRe; it is said to be
intransitive if aRb and bRc always imply aRb; and it is said to be

non-transitive otherwise.

2.4 EQUIVALENCE RELATIONS

Any relation which is simultaneously reflexive, symmetric, and
transitive is called an equivalence relation. This specisl word is
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introduced because these relations appear often and pley an important
role in many methematical situations. The equivalence relation "lives
in the same.house as" illustrates vividly the central feature of any
equivalence relation: it divides the population into disjoint subsets,
namely, the sets of people who live in the same houses. In other
words, it induces a partitioning of the given population. Let us
emphasize that this feature is not unique to "lives in the same house
as;" it is true of all equivalence relstions.

We say than an equivalence relation R pertitions the set on which
it is defined into equivalence classes, which are charactsrized as
follows: any two elements in the R relation are in the same class,
and any two not in the R relation are in d4ifferent classes. Conversely,
any partitioning of a set induces the obvious equivalence relation on
the set. Thus, the idea of a partitioning and of an equivalence reiation
are substantially the same.

The best known example of an equivalence relation iz, of course,
equality. It is in a sense trivial, hovever, for the equivalence
classes of the equality relation each consist of a single element,
whereas, in general, at least some equivalence classes will have more
than one element. The idea of an equivalence relation is therefore, a
slight, but important, generalization of equality. It says in effect
that the elements in the same equivalence class are "equal" to each
other with respect to the property inducing the relation, even though
they are not identical, as they would have to be for equality. More
often than not, we are comncerned with equality along one dimension or
another, but not strict identity. Often we wish to group things with
respect to some parameter and to treat them as all equal in the rest
of the analysis. This is what one is doing when one groups people
according to income levels, or according to religious affiliation, or

profession, etc.



Problems

1-For each of the following relationships state their reflexivity,
symmetry, and transitivity properties:

is the brother of, sells to, gives orders to, is the ancestor
of, implies, is the son of.

2-Prove formelly that the equivalence classes of an equivalence
relation form a partitioning.

3-Criticize the following "proof" of this erroneous statement: if a
relation R on A is symmetric and transitive, then it is reflexive.

Proof. For any & € A, the fact that the relation is symmetric means akb
implies bRe. But by transitivity, aRb and bRa imply aRa, so the relation
is reflexive.

¥2.5 MATRIX AND GRAPHICAL REPRESENTATIONS OF RELATIONS

Whenever one has actually to work with real subsets ; in contrast
to making general theoretical statements as we have been doing, there
is a problem of how best to Present them. As a special case of sub-
sets, the same problem exists for relations; however, just because of
their specialness, some convenient methods exist for relations which
are not applicable in general. There are two major methods: a systematic
tabular one and a less systematic, but often more revealing, graphical
one. Neither of these methods is terribly practical if the underlying
set has more than, say, 100 elements.

The tabular scheme is based on the almost trivial observation
that & relation on a finite mumber n of elements amounts to nothing
more than a two dimensional table with n rows and n columms. In the
eniries one mark is placed if the relation holds from the element
identified with that row to the element identified with that column;
another if it does not hold. More specifically, if we number the ele-
ments in A from L tnrough n, then we put one mark in the entry of row
1 and column J if iFJ, and another if iRj. The most widely used scheme
1s to use 1 if iRj, and O otherwise. Example: Let A = {1,2,3,4) and
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R = {{1,2}, (2,1]), {2,2}, {2,3}, (2,4}, {4,3}]), then the array is

cC O ¥ Ol b=
©C O K W
H O K O W
O O + O &

= w M

- —

This array, ignoring the row and column lables, forms a 4 by 4 matrix
with only the entries O and l.

Other possible entries have been suggested and used -- the choice
of convention depends very much upon what one wants to find out and how
one is going to do it. Awong the other suggestions, two will be
mentioned. Enter a 1 in the (1,)) entry if iRj mad a =1 if iﬁj, iIst ©
be some set (usually having some relation to the problem under investi-
gation). Enter U in the entry if iRj, and § otherwise. The first
suggestion results in an ordinary real-valued matrix, just as when
O and 1 are used; the second, with its entries sets, is a new kind of
beast known as a8 Boolean matrix. We will not look further into either
of these representations of a relation.

Returning to the 0,1 representation, suppoce that the elements of
A are people in some industrial establishment and that the relationship
under consideration is "communicates to."” In practice, there are
serious guestions as to what ane shall define "commmicates to® to mean
but presumably it would be defined in such 8 manner that the president
coommunicates to his vice presidents and not to a foreman or a janitor.
We need not worry about such points here. If we choose any {two people
8,b € A, wve may ask: does a cammmunicate direectly to b7 If not, is it
possible for him to s0 via scme intermediary c¢? Or by several intermed-
iaries? Obviously, there is no problem tc answering the first question;
we simply look in row s of the matrix representation and determine whether
there is a 1 or a O in columm b. But to answer the second question, we
must simultaneously look for & 1 in rovw &, column ¢ and in row ¢, column b,
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and since we do not care who the intermediary is we must do this for each
possible c¢. And when we go beyond two-step connections, the problem
rapidly becomes very messy. What we must find is a systematic wvay of
using metrix operations to answer such questions.

Let us dencte by R both the relation and its matrix representation,
and let Ri,j denote the entry, either O or 1, in row i and column Jj of
the matrix R. We note that the product Racncb is 1 if and only if
Ra.c = 1 and Rcb = 1; otherwise, it is O. Thus, there is & two-step
Path from & to b via ¢ if and only if RacRcb = 1. DBut since we do not
care which person ¢ is, there is a two-step path from a to b if and only

if the sum

RiRip

htp

Ra.lRlb+Ra.2 +...+Rmﬁnb=

i=1

is greater ..an 0. Purthermore, the value of the sum equals the number
of people in A who can serve as intermediaries from a to b.

But to anyonme knowing matrix algebra, this sum is very familiar; it
represents the entry of row &, column b in the matrix obtained by
multiplying R by itself -- in Rg. Thus, simply squaring R gives us
at once the mumber of two-step paths between each ordered pair of
elements fromw A. If R represents direct comuunication, Re the two-
step cnes, it is plausible to conjecture that R3 gives the number of
three-step ones, and in general Rk gives the number of k-step ones.

This conjecture is easily verified.

The main virtue of this observation is that it reduces a feirly
complicated counting problem to & very systematic procedure -- matrix
muitiplication -- which can be carried out by a clerk or by a high
speed camputer if the matrices are very large.

You may wonder what, if any, sre the matrix correlates of
reflexivity, symmetry. and transitivity. Rirst, it is 2asy to see that
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& relation is reflexive if and only if all the entries in the main diagomal
are 1's. The relation is transitive if and only if whenever an entry of
R2 is non-zero, the corresponding entry of R is also non-zero. This we

can gsee ag8 follows: If the (m,0) entry of K 1is positive, then there
exists at least one b € A such that aRb and bRc. But if R is transitive,
this implies aRc, and so Rac = 1l. The converse is equally easy. The
sympetry of a relation is not dbest seen in terms of matrix multiplica-
tion, but in terms of the symmetry of the matrix R.  Corresponding to
symnetry in a relation is perfect symmetry about the main diagonal, as

in the following example

01 0 1 R
1 1 01
0 0 0 1
11 10

L -

It is reasonably evident that these three conditions do not combine
into a single simple condition for an equivalence relation (which, it
will be recalled, is reflexive, symmetric, and transitive). Nonetheless,
there is one fact about the matrix of an equivalence relation which is
worth noting. If one numbers the equivalence classes from, say, 1 to s,
and then numbers the elements in the first equivalence class successive-
ly from 1, those in the second successively from the last number in the
first class, and so on, then the 1's in the matrix will appear as non-
overlapping squares about the main diagonal. For example,

— —

C O O O C - M
O C O O O H = M
o O O O + O O C
o O + D O O O
cC O~ O O O O
-~ O O O O O ©
H » O O O © O O

C o O C O + = K



represents the equivalence relation with the equivalence classes
{1,2,3}, (&}, (5,6}, (7,8}.

For computationsl purposes, the representation of relstioms by matrices
is gemerally sffective, but for Sunderstapding® the relatim
they leave a good deal to be desired. Myst of us do a lot better with
socme sort of dlagramatic representation, of which flow charts, organ-
icational diagrams, and engineering schematics are typical. The generic
mathematical term for such drawings is an oriented (topological linear)
graph. Formally, an oriented graph is a collection of points and
directed lines connecting them, as in Fig. 12.

l) N
M \. /

Mg. 12

Let it be clear that this use of the word "graph" is somewhat difrerent
from the one with which you are already familiar: the graph of a
function on a two dimensional plot.

In diagrams of oriented graphs it is customery to use & single
undirected line between points a and b if there is both & directed line
from a to b and from b to a. (This we have done in Fig. 12.)

In the gereral mathematical concept of a graph there may be any
number of directed und undirected lines between a pair of points, but
we shall restrict our attention to the case where there either is no
line at all connecting them, or a single directed line, or a single
undirected one. (Terminology: the points are often called nodss or
vertices, and the lines, branches or arcs).
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It should be clear how t0 represent a relation by a graph. Distinct
points are chosen in the plane, one corresponding to each element of A.
If aRb, we draw a directed line from a to b. It does not matter where
in the plane we place the points, so long as they are distinct, nor
does it matter whether we draw straight or curved lines. Allthe graphs
in Fig. 13 represent thc same abstract relation, and they are all equal
to one another. (The numbering of the points is introduced to facilitate

5T e \1\3 »—:-_-*3 /\
VY e e

Fig. 13

your seeing the identity of the graphs.) Distances and angles are not

at all involved in these representations. On the other hand, there

can be great psychological differences among several different graphs of
the same relation. Consider those shown in Fig. 1k. Most people looking

DN NI

Mg. 1k

at the first drawing will spesk of it as & simple hierarchy. To some
people the second suggests "the man behind the throme," and to others a
simple hierarchy with a bottleneck. The third elicits the feeling that
there is a central person in & focal position of leadership. But, they
are the same graph drawn in slightly different ways. This is not to say
that vertical organization of the drawing cannot be used to convey some
information, but only that it always seems to even when such was not
intended.



The graph of a reflexive relation has a closed loop &t each point:
{;:) . The graph of a symmetric relation has only undirected lines. The
graph of a transitive relation hes no configurations of the type shown at
the left of Fig. 15, only those on the right. From these remarks it is

TN N

Mg. 15

easy to guess what an equivalence reletion must look like: clusters of
points with all possible lineswithin each cluster, and none between them.

4n example (with the closed loops at each note omitted) is shown an the left
of Fig. 16, The right hand graph is,

O A— |

Fig. 16

however, the same relation. We show this to emphasize how Aifficult it
can be to detect the properties of a relation drawn in graphical form if
there are no initial hints &8s to how to orgunize the drawing. The same
remark tends also to hold for matrix representations.

One further graph theoretical idea is needed in the following section.

Consider the two unoriented graphs (representations of symmetric relations)
shown in Fig. 17. The main difference between these is that the one on
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the left has a closed loop of lines: aRb, bRe, cRd, and dRs; the one on
the right does not. Whenever an unoriented graph fails to have such
loops, it ic called a tree (the reason being fairly obviocus). Such
graphs play an important role wherever & bifurcating decision process is
involved.

Possibly the most extensive application outside of mathematics
proper of relaticus and their representations is in that part of social
psychology known as sociometry. The central thesis of this discipline
is that certain of the relations which exist and can be cbserved in
groups of people are crucial to an understanding of the behavior of
groups, and there is an extensive literature exploring empirical data,
relating it to mathematical properties of relations, and probing the
mathematics of relations itself. A recent survey of this material is:
Lindzey, G. and Borgatta, E. F. "Sociometric Measurement,” Handbook of
Social Psychology (G. Lindzey, ed.), Addison-Wesley, Cambridge (195L),
LO5-448.

*Problems
l-Write the matrix representation of the relation having the follow-

ing graph: l

———— e
Draw the graph corresponding to this matrix:

T o0 11 0 1 1
1110 1
1 010 0
1 00 0 0
0111 1.

g ]

2-Fer the last matrix, how many three-step peths are there from
1t5 5, from 2 to 47
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3-Can you see sny difficulty in the interpretation of the entries of
Rk as the k-step paths in the relation represented by R.

.-What does the matrix condition R2 = R mean for the melstion
represented by R?

#2.6 GAMES IN EXTENSIVE FORM

In section 1.9 we mentioned one mathematical construct which arises
in the theory of games (which is the current mathematical model for
conflict of interest among people or organizations), and here we want
to discuss another which illustrates the use of some of the ideas we
have so far developed. The material given here arises a% the beginning
of game theory, when one is first trying to abstract :nto mathematical
form what it is that the rules of a parlor game actually tell you. First
of all, the rules of any parler game specify a series of well defined
moves, where each move is a point of decision for & given player from
among & get of alternatives. The particular alternative chosen by a
Player at a given decision point we shall call the choice, whereas the
totality of choices available to him at the decision point copnstitutes
the move. A sequence of choices, one following another until the game
is terminated, is called & play. Let us suppose that in one game (at
some stage of a play) player 1 has to choose among playing a king of
hearts, a two of spades, or a jack of diamonds, and that in another
game & player, also denoted 1, has to choose among pessing, calling, or
betting. 1In each case the decision is among three alternatives, which

/

may be represented by a drawing as in Fig. 18.

But how can these two examples be considered //
equivalent? Certainly it is clear from common 1
experience that one does not deal with every three- Fig. 18

choice situation in the same way. One might if they

were given out of context, for there would be no other considerations to
govern the choice; but in a game there have been all the choices preced-
ing the particular move, and all the potential moves following the one

under consideration. That i{s to say, we cannot truly isolate and abstract
% The meterial in this sectimn is almost idemtical %o p, 3944 of
Luce, R.,D, and H, Raiffa, Games snd Dscisiqus, Jom wWilsy, Wew York, 1957,
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each move separately, for the significance of each move in the game
depends upon some of the other moves. However, if we abstract

all the moves of the game in this fashion and indicate which choices lead
to which moves, then we shall know the abstract relation of any given
move to all other moves which have affected it, or which it may affect.

Such an abstraction leads to a drawing the type shown in Fig. 19 --
to & tree. The number associated with
each move indicates which player is to
manke the move, and therefore these
numbers run from 1 through n, if there
are n players. In the example of
Fig. 19, n = 4, and we see that all
the moves, save the first, are assigned Fig. 19
to one of the players; the {irst move
has O attached to it. A move assigned to "player” O is a chance move,
as, for example, the shuffling of cards prior to a play of poker. To
each chance move, which need not be the first move of the game, there

must be associated a probability distribution, or weighting, over the
several alternative choices. TIf a chance move enteils the flipping of
a fair coin, then there are two choices at the move and each will ocrur
with probability 1/2.

As we said, the graph of a game is a tree, whish is called the game
tree. It may not seem reasonable to assume the graph of o game is a
tree, for in such games as chess the same arrangement of pileces on the
board can e arrived at by several different routes, vhich appears to
mean that closed loops of branches can exist. However, in game theory
we choose to consider two moves as different if they have different
past histories, even if they have exsmctly the same possible future
moves and outcomes. In games like chess this distinction is not really
important and to make it appears arbitrary, but in many ways the whole
conceptuanlization and analysis of games is simplified if it i{s made.
The tree character of a game is not unrelated to the sinking feeling
one often has after making a stupid choice in a8 game, for, in a semse,

.



each choice is irretrievable, and orze it is made there are parts of the
total game tree which can never again be attained.

The iree is assumed to be finite in the sense that a finite number of
nodes, and hence branches, is involved. This is the same as saying that
there is some finite integer N such that every possible play of the game
terminates in no more than N steps. Such is certainly true of all parlcr
games, for there is always a "stop” rule, as in chess, to terminate
stalemates. To say the tree is finite is not to say that it is small and
easy to work with. For example, card games often begin with the shuffling
of a deck of 52 cards, and so the first O move has 52!, i.e., approxi-
mately 8.07 x 1067, branches stemming from it. Clearly, for such games
no one is going tc draw the game tree in full detail!

The next step in the formalization of the rules of a game is to
indicate what each player can know when he makes a choice at any move.
We are not now assuming what sorts of players are postulated in game
theory, but only what is the most that tla2y can possibly know without
violating the rules of the game. C(learly, there is the possibility that
the rules of the game do —ot provide a player with knowledge on any
particular move of all ihe choices made prior to that move. This is
certeinly the situation in most card games which begzin with a chance
move, or where certain cards are chosen by another player and placed
face down on the table, or where the cards in one player's hand are not
known to the other players. Indeed, it may be that a player at one move
does not know, and cannot know, what his domain of choice wes at @
previous move. The most common example of this is bridge where the
two partners must be considered as a single player who intermittently
forgets and remembers what alternatives he had availsble on previous

moves .
To suggest a method to characterize the information avails ble to a

player, consider a game whose tree is that shown in Fig. 20. The dotted

lines enclosing one or more nodes are something new in our scheme; as we
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shall see they can be used to charscterize
the state of informaticn when a player has
a move. Let us suppose that the rules of
this game assert that on move 1 player 2
must choose among three alternatives denoted
a8,b, and c. Regardless of player 2's choice,
player 1 has the second move. We shall
wpose that the rules of the game permit
player 1 to know whethur or not player 2 selected choice a. If player 2
chooses b, then the rules are such that player 1 can only know that
either b or ¢ was chosen, but not which. While verbally this may seem
complicated, graphically all we need do is enclose in a dotted line
those moves of player 1 which end up on b or ¢. The dotted line simply
megans that from the rules of the game the player is unable to decide
where he is among the enclosed moves. The single move at the end of
choice a is also enclosed, for if that choice is made player 1 knows it.
If choice b wes in fact made, and if player 1 ther makes choice f (of
course, he does nc. know whether he is making f r i) the next move is
up to player 4. Note that according to the diagram, the rules of the
game make it impossible for him to determine whether he is choosing

between n and o or between p and q.

In general, the rules of any game must specify in advance which
moves are indistinguishablie to the players -- the sets we have enclosed
in dotted lines. Abstractly, there are two obvious necessary features

to these sets of moves -- which are known as informaetion sets. Each of

the moves in the set must be assigned to the same player, and each of the
moves must have exactly the same nmumber of alternatives. For if one move
has r alternatives aund another s, where r # s, then the player would need
only count the number of alternatives he actually has in order to elim-
inate the possibility of being at one move or the other. A third con-
dition, which may be less obvious, must also be assumed, namely: a single
information set shall not contain two different moves of the same play of
the game tree. The reason for this is the impossibility of devising rules



so that a single player is unable to distinguish between two of his moves
which lie on a single play, i.e., on a chain of moves from the first move
to an end point of the tree.

Returning to Fig. 20, comsider player 1's information set whick has
two moves. Since they are indistinguishable, each choice on one move
must have a corresponding choice on the other move. It is convenient
in these diagrams to pair them systematicslly, so f corresponds to i,

g to j, and h to k. It is clear that this correspondence can be gen-
eralized to information sets having more than two moves and other than
three alternatives at each move.

The final ingredient given by the rules of the game is the outcome
which occurs at the end of each play of the game. Almost anything may
be found to be the outcome of some game; for example, the subjective
reward of victory in a friendly game, or the monetary punishment of
seeing someone elee sweep in the pot, or death in Russian Roulette. In
any given system of rules for a game there is some fixed set of outcomes
from which specific ones are selected by each of the plays. Each cf the
end points of the game tree is a possible termination point of the game
and it completely craracterized the play of the game which led to that
point, for there is only one sequence of choices in a tree leading to a
given end point from a fixed first move. We may index these end points
and denote a typical one by the symbol x . Now, if X is the set of
outcames, the rules of the game associate to each X an outcome from X
which we may denote by f{x). For example, in & game like tic-tac-toe
the set of outcomes is {player 1 loses and player 2 wins, player 1 wins
and player 2 loses, draw). In this case, and in a wide class of games,
it would be sufficient to state the outcomes for only one of the players,
but in other situations which are not strictly competitive it is necess-
ary for the elements of the outcame set to describe what heppens to each

player.

In swmery, then, the rules of any game unambiguously prescribe the
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following:

i. a finite tree with a distinguished node (the tree describes
the relation of each move to all other moves and the dis-
tinguished node is the first move of the game);

ii. a partition of the nodes of the tree into n + 1 sets (telling
which of the n players or chance takes each move);

iii. a probability distribution over the branches of each O move;

iv. a refinement of each of the player partitions into the
the partition of information sets (which characterizes for
each player the ambiguity of location on the game tree of
each of his moves);

v. an identification of corresponding branches for each of the
moves in each of the information sets; and

vi. & set X of outcomes and an assignment f of an outcome f(x)
tc each of the end points x -- or plays -- of the tree.

You will note how relations have played a role in this description:
foremost as the game tree itself, but also as equivalence relations in
the form of the player partition and the information pertition.

In Chapter 3, when we have introduced the idea of utility, we will
see how this complicated structure is translated into a far simpler
mathematical structure which is much more like some of the maximization
problems with which you are familiar.

2.7 ORIERINGS

In addition to relations that partition sets - ~ equivalenoce
relations -- there is another important class of relatimns, namely those that
impose an ordering on the elements of u set. We have already mentioned
several examples of such relations: inclusion among subsets of a given
set, greater than or equal to among numbers, and not poorer than among,
say, suits of different qualities. We see that these three exsmples are
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all like an equivalence relation in being reflexive and transitive,

but they differ in not being symmeiric. One might be tempted, on the
basis of inclusion and inequality, to suppose that orderings are
inevitably anti-symmetric, for if A( B and A # B, then we know that

BC A is false. But "not inferiar to® raises some doubts sbout this,
for a person certainly can judge two suits to be of the same quality
without concluding that they mst therefore be the same suit. This being
the case, we are led to the following

Definition: Iet R be a relstion on the set A. R is called s
quasi-ordering of A if it is reflexive and transitive.

Note, according to this definition any equivalence relation is

also a quasi-ordering, but, of course, the converse is not so.

It seems reasonsble t0 call a relation like "greater than or equal
to" an ordering, since it orders the numbers according to magnitude,
but why the prefix "quasi”? Not only relations like numerical inequality
are encompassed by the definition, but also relations like set inclusion
which do not manage to string things out in a single "line.” Given two
subsets, neither may be a subset of the other. That is to say, two
elements a and b may be incomparable in the sense that neither aRb nor
bRa holds. This is the reason we quslify the word "ordering' by "quasi."
Another example: suppose that in same population we measure the weight
and height of the people. Let Xq denote the weight of person x end X5
hig height. Define the relation '"smaller than" over the population to
be: x is smaller than y if both x weighs no more than y and is ro taller
than y, i.e., Xy S_yl and Xy S.Yg' One can readily verify that this is
& quasi-ordering of the pecple and that there may be pairs of people
who are not camperable, namely: those x and y such that x weighs more
than y but is at least a short as y and those such that x is as light
as y and is taller than y. This kind of relation can, of course, be
extended to more than two numerical dimensions, each of which is ordered
according to magnitude.
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It is frequently convenient to decompose 8 quasi-ardering into two
separate relations. In the case of inequality into "strictly greater
than" and "equal to." 1In the case of "preferred or indifferent to"
into "strictly preferred to” and "indifferent to." Formally, if R is
& quasi-order, we define two relations P and I as follows:

aFb if aRb and bRa
ald if akb and bRa

It follows directly from the transitivity of R that both P and I are
transitive. Since R is reflexive, aRa always holds; hence als and aba.
Thus P is irreflexive and I is reflexive. Clearly, by the definition I
is symmetric and P is anti-symmetric. So, in summary, a quasi-order
can be decomposed in a natural fashion into a relation P, which is
irreflexive, anti-symmetric, and transitive, and a relation I, which is
an equivalence relation.

it sometimes happens that once we have decomposed a quasi—arder into
these two relations, we decide that we are willing to treat each of the
equivalence classes induced by I as a unitary object. That is, we are
actually interested in the relation over the set having these equivalence
classes as its basic elements. There is absolutely no difficulty in
defining a relation which corresponds perfectly to P over this set, for
if A and B are two different equivalence classes and aPb holds for some
8 € Aand b € B, then for any a' € A and b' € B, a'Pb’' also holds. This
follows immediately from the transitivity of R. Thus, for the equiva-
lence classes we define a new relation, call it P again, as follows:
APB if A =Bor if, for a € Aand b € 3, aPb. This new relation is like
set "inclusion” in that it is reflexive, anti-symmetric, and transitive.
In other words, it is a quasi-relation which is alsq anti-symmetric.
Since this special class of quasi-relations is quite important, we are
led to the

Definition: If R is an anti-symmetric quasi-ordering of A, it is
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called a partial ordering of A.

A partial order is almost the same as a quasi-order except that we
can conclude that a = b 1f both aRb and bRa hold; in a quasi-order tie
same condition only allows us to say a and b are "indifferent” -- which
is to say, equal with respect to the property characterizing the order,
but not necessarily identical elements. Set inclusion is a partial order.

¥While some interesting orderings do not allow us to make comparisons
agong all pairs of elements, others do. Exaemples: greater than or
equal to, (optimistically) preferences people hold among commodities,
etc. Presumably these are sufficiently important to be given a name.

Definition: A quasi-order R on A is called a weak ordering of A
if every pair of elements is comparable, i.e., if a,b € A imply
that either aRb or bRa or both holds.

Definition: A partial order R on A is called a simple ordering of
A (it is also called a linear ordering and a chain) if every pair of
elements is comparsble.

We note that a simple order stands in the same relation to a weak
order as a partial order does to a quasi-order: +the former in each
cese being anti-symmetric, the latter not.

As we suggested above, if Al is a set weakly ordered by Rl’ AE
weakly ordered by RE""" and An by Rn’ then it is always possikle to
induce a quasi-order on the product set A = Al >< A2 > .. X< An‘
Formally, we do so as follows: Let x = (xl, Xps ey xn) and

y= (yl, Yor +oes yn) € A, then we define xRy if and only if

lelyl’ x282y2’ +e-y and annyn°

The most familiar examples of this are when each Ai is the set of resal
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numbers ordered by magnitude, as was the case in our example.

It is also always possible to induce a weak ordering on A, and in
many contexts this type of weak order is important. Roughly speeking,
what we do is order the n sets A, according to their "importance, " and
then require that a more important "dimension' always have precedence
over a less important one. Example: a military commander may have
several courses of action, each of which will have repercussions in
several quite different domains. He might evaluate them according to
his potential for future action, the damage inflicted on the enenmy, loss
of 1life among his own troops, and his personal gain in prestige. If he
Judges these consequences to be of overriding importance in the given
order, then he will always choose the course of action which makes his
rotential for future action greatest, but if they are all the same in
that dimension he will drop to the next and choose the one which results
in greatest enemy damage, but if they are also all the same on that level,
he will drop down to the next, and so on. A very familiar example of
this kind of hierarch of dimensions is the ordering of words in a
dictiopary: +the first letter governs the ordering except when two words
have the same first letter, in which case the second does, and so on.

In general a lexicographic ordering R of the product set A is
defined as follows:

xRy 1f xRy, and y,Rix)

or if lelyl and ylﬁlxl and xeReye and y232x2
or ....

To cloge this section on orderings, let us append & word of caution.
Throughout mathematics orderings of the types discussed are so ubquitous
and useful that one tends to get a little rigid about them. This secems
to be & particular problem when it comes to formulating socially and
psychologically interesting "orderings" surh as preferences among goods,
or comparative quality of objects, etc. Much of the difficulty centers
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in the assumption that a preference relation, say, is transitive. One
feels, somehow, that if he prefers a to b and b to ¢, then he should
prefer a to c¢. It is cerfainly a plausible normative statement for
"strict preference,"” but it is something else again for "preference or
indifference.” Tor imposing transitivity in the latter case implies

that we are supposing "indifference" is also tramsitive. It is doubtful
if this is often s0. We have come back again to the question of dis-
crimination which was first raised when the idea of a set was intro-
duced. By and large people do not, and in some sense cannot, discriminate
rerfectly. An example may suggest the difficulty with orderings. Most
people would strictly prefer a cup of coffee with one lump of sugar to
one with five lumps. These same people, however, could be expected to
report indifference between two cups which, no matter how much sugar
they contain, only differ from each other in sugur content by a thousandtn
of a gram. If so, then by taking a sequence of cups from one to five
cubes in increments of a thousandth of a gram, we would have to conclude
from the transitivity of indifference that the person is indifferent
between one and five cubes. As this is contrary to choice, we have cast
doubt on the widely used assumption that indifference is transitive. To
get around such dilemmas it is possible to introduce "orderings" in which
P is transitive and I is not, but we shall not go into that here.

Problems

1-what kinds of relations are the following (prove your answers):

a-let "age" mean a person’s age in years at his last birthdsy, and
let the relation be "h.s the same age as"

b-less than one year's ?ference between birthdates

c-at least as tall as

d-let A be a set of cities in the United States, and let the re-
lation be defined on A >< A as the "the greater distance between
two cities in scheduled airline miles."

2-Glve significant industrial examples of a quasi-order, weak order,
and a lexicographic order.
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3-Just before the definition of a partial order, we sketched how a
quasi-order induces a partial order on the set of equivalence
classes Of the indifference relation. We asserted that the in-
duced relation is transitive; prove this.

2.8 FUNCTIOKRS

The intuitive idea of a function is widespread and of the utmost
importance in almost all science. Essentially, one means by a function
8 ruie that assigns something to each value of a variable quantity. For
example, if x denotes a real number, then the functicn f, where
£(x) = x3, is the rule that assigns the real number x3 to each value x
of the variable. In addition to such power functions of algebra, many
comuon examples of functions are known from trigonometry and the calculus:
the sine, the exponential, the logarithm, etc. It is usually made clear
in the calculus that we shall call any rule which assigns & real number
to each value of a real-valued variable x a function. Of course, in
practice attention is largely restricted to continuous functions, or at
vorst to those which,like 1/(1 - x) and 1/(1 - x) x, have only one or
twvo discontinuities.

Historlically, these are among the earliest notioms of a function,
out during the 19th century the concept was broadened until now we have
an exceedingly general and simple definition. Even in the calculus one
tegins to see the need to biroaden the concept. For example, consider
the process of taking the derivative of a function. This can be looked
upon ag the assignment of one function, the derivative, to another. Tae

cosine is assigned to the sine, since d sinx = cos x. Thus if you take
dx
the set of differentiable functions as the underlying variable, differ-

entiation assigns to each of these another function. This is very much

like our ordinary idea of a function, except that real numbers are re-
placed by real-valued "ordinary" functions. The sets which represent
the independent and dependent variables are sets of functions, not the
real numbers. But other than that, the notion is not very different.
The.integral, and many other operations with functions, can be viewed
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require special treatment.

Definition: Let D and R be two (not necessarily different or
disjoint) sets. A subset F of D >< R having the property that for
each 4 € D there exists at least one r ¢ R such that (d,r) ¢ F is
called a function from the domain D into the range R. The set

[r] r € R and there exists d € D such that (4,r) ¢ F]

is called the image of D under F. A function F is called single-
valued if (d,r), (4,r') ¢ Fimply r = r'.

For reasons which are partly historical and partly matters of
convenience, certain special notations are used for functions which
differ from the usual notation of & subset of the product of two sets.
Historically, the early notions of a function arose and were widely
employed long before this more abstract definition was evolved, and as
a result different notations were introduced. Haturally, these are
better known. In addition, many of the concepts one wishes to consider
about functions can be more neatly expressed in the conventional
notation (see Chapter 3). There are four, somewhat different, notations
which we may mention. In these F is simply the name of the function
which is given by tue subset F of D > R; this is not the first time we
have let the same symbol play two different, but closely related roles.

1-F: D oR
2-F: x -PF(x)
3- x geF(x)
L-p

But what of the most common notation of all, F(x); why is that
omitted? It is true that this is the most common notation, but it is
misleading and, in fact, incorrect. F(x) denotes the image of the
point x in the dumsin, not the whole function which describes how each
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point of D is mapped into R. 'he function is F. We will avoid the
notation F(x) for a functiowu.

There is a certair amount of terminoclogy about functions which it is
well to have at one's finger tips. Some of it has already been introduced
and used: domain, range, image, and single-valued. We say that a function
is onto R if its image is R; otherwise, or if we don't know, we say it is
into R. A function which is not single-valued is called multi-valued.
Actually, most often one Just uses the word "function" to mean "single-
valued function,"” and prefixes it by "multi-valued" if it is not single-
valued. There are a fair number of synonyms for functions, many of which

have implicit conventions for their use. Among them are: mapping,
transformation, and operator.

There is a perfectly trivial way to avoid ever having to
work with multi-valued functions, but often this trick does not
really buy anything. Suppose F is a multi-valued function from
D into R. This means that F(d) is not necessarily a single
point in K, but can be a subset of R. But, of course, a subset
of R is a single element in ER, hence we can always treat F as
& single valued function from D into ER. The rea:on that this
change is not always valuable can be easily illustrated. Sup-
pose F is a real-valued function of a real variable defined as
follows:

x for x > 1
F(x) = .
0 for x < 1

At the point 1, F(1) = {0,1). To make F single-valued, we would
then pass from the fairly simple range of the real numbers to

all possible subsets of the reals, which is an extremely compli-
cated set having none of the neat and familiar structure of the
reals. This is an awful price to pay for being unwilling to skirt

about one obstreperous point in the dcmain.
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Suppose that F: D - Rand that D =X > Y, then we say F is =
fuaction of two variables, oune with damain X and the other with domain
Y. If d € D, then by our assumption about D, it has the form
d = (x,y), where x € X and y € Y. Thus, F(d) = F((x,y)). For
simplicity, F((x,y)) 1s ususlly written F(x,y). If D is the product
of n sets, then we say F is a function of n variables. For example,
suppose X is the set of real numbers, then we know that X >< X demotes
the plane. Thus, if F: X >X X =X, then F is an "ordinary' real-
valued function of two real variasbles. Examples of such functions are
F(x,y) = xy and G(x,y) = x + y. So we see that the familiar multi-
plication and addition of numbers can be considered as functions from
the plane into the real numbers.

Problems

1-The set operations of union, intersection, and complementation
are all functions. Specify the domain and range of each. Are
they onto or only into? Are they single- or multi-valued?

2-Prepare a list of five truly significant functions which are in
one way Or another involved in an industrial plant. Make at
least two of them concerned with mansgement problems. In each
case carefully specify the domain, the range, and the function
itself.

2.9 SUMMARY REMARKS

S50 far we have really done nothing; we have only introduced you to
& battery of concepts which you have had to take on faith as being use-
ful. This probably was not too difficult to do, since at least in
special cases you have seen many of these notions before. Having this
apparatusg, we will be able to delve into its use in social science
problems ir the next chapter. There we shall be almost entirely con-
cerned with the question of how to specify and to find out about
functions when their ranges and domains are different from the real
numbers. In the course of doing so, we will work through simple
versions of seversl problems which have proved important in the social
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sciences.

But before turning to these questions, one point should be made about
the ground we have covered. A number of very genexral ideas have been
introduced, including relations, orderings, and functions in this chapter.
Yet in each case it turned out that we were not required to iutroduce any
nev basic ideas. Once an idea was evolved, we were always able to formu-
late its definition in terms of our more primitive idea of a set. Thus,
our only undefined, primitive ideas continue to be those of e set,
element, and belongs to (plus the rules uf logical inference). Every-
thing else has been given meaning in terms of these primitives. This
kind of econony is not only intellectually elegant, but allows us to
concentrate on a relatively few primitives if later any difficulties

seem to arise.

Let us turn now to the methods which have been evolved fir working
with functions.



CHAPTER III

AXTOMATIZATIOR OF FUNCTIONS

3.1 INTRODUCTION

Mich mathematical work in science -- be it physical or behavioral
science -- is devoted to the isolation and investigation of functions
thich, for ome reason or another, are deemed to be of interest. In the
paysical sciences the major, but by no means exclusive, tools are
differential equations and their varicus extensions and relatives which,
together, are called analysis. For {he most part, these methods cannot
be carried over directly to the behavioral sciences because the basic
behavioral variables ~-- at least as they are now viewed -- are not
numerical. The sir le outstanding exception to this is economics.

This observation must not be interpreted to mean that the sets
representing social and psychological variables are totally without
structure; on the contrary, same structure is essential. But it just
doesn't happen to v ~“hat of numbers. For most of us trained in the
physical sciences, being deprived of our major weeron -- analysis --
leaves us with a bewildered empty feeiing, snd we tend to fall beck
upon non-mathematical approaches, relying on intuitior and, all too
often, prejudice when we have to think abc t problems where people '.re

invrolved.

The main purpose of this chepter is to show that things are not
nearly so black as they first scem and that what one is forced to do
in the mathemstization of behavioral problems is not, after all, so
differenty from what one does in physics. We shall begin by talking a
bit about the definition of a few familiar functions, for such defini-
tions are not always well understood. After that we shall inguire as
to just what one means by a differential equation and its solution. We

will not be in the least concerned with solutions to particular
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differential equations, but rather with the meaning of a solution to any
differential equation. Once this is understood, it will be more or less
clear in primeciple how to extend thes. same ideas to domains and ranges
which are not numerical. However, to stop at that point would hardly be
convincing or satisfactory, and so the rest of the chapter is devoted to
p.sesenting & mumber of special cases with an eye to msking this "in
Principle” extension far more concrete and meaningful. In each case,
one or two very simple examples will be given to illustrate the idea,
and then in starred sections more complicated examples drawn from the
behavioral sciences are offered. In order to keep complications to a
minimum, we have sometimes chosen formulations of these problems which
are less general and less elegant than some available in the literature.

Let us strees again that there is a simple conceptual unity lying
behind these examples, and that in turn there is a close conceptuasl --
though not technical -- similarity between them and the analytic methods
you know so well. The details of presentation should not be allowed to
becloud the basic simplicity and power of the axiomatic method.

3.2 DEFINING FUNCTIONS

In a way, all that we have to say in this chapter is implicit in our
previous rexerks about defining & set. Basically, a set must be defined
via & property (sometimes presented as two or more properties for con-
venience of statement) which its elements, and only its elements, satisfy.
Tnere are two special cases of this which we have singled out as being of
a distinctive character, rendering them almost conceptually different:
First, the elements of a finite set can be listed explicitly. Second,
some seils can be defined as a "combination" (e.g., union, intersection)
of previously defined sets. The very same comments hold for functions,
since, as we have seen in the last chapter, they are nothing more nor

less than a special brand of set -- a subset of D >< R.

It will help, however, if we explore the implications of this remark
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much more fully. We will first dispose of the last two special methods
of definition, and then concern ocurselves in the rest of the chapter with
functions defined implicitly by properties they satisfy. The most
familiar examples of functions presented explicitly are those giren in
tabular or graphical form. Tables of the sine or the logarithm are ex-
plicit listings of two functions. To be sure, only certain selected
values of the function are tabulated and then only to a certain degree
of accuracy, and one must interpolate to find other valu.s. The tabular
or graphical presentation of experimental data amounts to the same thing.
Indeed, any time the domain is finite, this method can be used, often to
advantage. For many theoretical purposes, however, it is not suitable
elther because it is not sufficiently compact or because, in idealizing
the problem, we have chosen an infinite set as the domain. Actually,
something ciosely related to an explicit tabula“ion of a function is
also possible when the domain is infinite, provided the image is finite.

Example:

1, if x is a rasimal number
f(x) = )
O, if x is an irrational mumber

This function is given an explicit definition by relying on an implicit
defiuition of certain subsets of the domain, irn this case the definition
of the rationals and irrationals. This is often s useful trick.

Definitions of new functions in terms of ones which are already
known plus admissible operations (such as addition and miltiplication)
in the range and domain are familiar. Ordinary algebra can be thought of
as being built up this way.

Another class of examples where new functions are defined in terms of
old are derivatives and integrals of known functions. Sometimes they can
be explicitly expressed as old functiomns, e.g.,

d sin x



Other times they cannot, as for example the elliptic integral

1/2
f@1 - kesinex) / dx.

Nonetheless, this integral is a well-defined function expressed in terms
of an operation on an old function; for numerical work, one usually loocks
it up in tables.

Cne very general and useful construction of new functions from old
is the iteration of two or more functions. Suppose f is a function
from D onto R and g from R into S, i.e.,

f: D - R (onto)
g: R —-S .

We may now define a function h which is the overall effect of first
mapping D into R via f and then R into S via g -- the iteration of
g on f. Formally, h: D +S is defined as
h{d) = g{£(d)], 4 ¢ D.

It is cusiomary to write h = g{f], or simply gf. A word of caution:
suppuse D = R = S = real numbers, then the symbol gf is ambiguous, for
it could mean the iteration of g on f or it could mean the function H
defined as follows:

H(x) = g(x)f(x), x any real number.

Usually, the context will differentiate tetween these two meanings.

As an example of iteration, suppose D = R = S = real numbers, and
£f{x) = x° and g (x) = log x, then



gle{x)] = zixelg
= log x
= 2log x
= 2g(x).
Note, flg(x)] = P[log x]
= [1log x] 2
Thus, in general, flg] # g[f].

Although defining new functions in terms of old is an extremely
valuable and oftea not too difficult activity, it still doesn't ever
get ic the heart of the problem of defining functions. Somewhere that
Process must cease and one Or more function. have either to be given
explicitly or implicitly. Sometimes explicit definitions can be used,
but for much theoretical work they will not do. This leaves us, then,
with the major area of implicit definitions. The rest of ‘hapter
is devoted to this.

Problems

1-Suppose f and g are defined to be
£(x) = b" and g(x) = log, x.
What can you say about f[g] and g{f]?
2-In general, if
£: D >R (onto)
g: R - D (onto)
have the properties
glf(a)]

f{g(r)] =r, for all r € R

d, forall d € D

i

we say f and g are inverses of each other. Show that a necessary
and sufficient condition for a function f from D onto 7 to have
an inverse is that for each r € R, the set
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[d] 4 € Dand (d4,r) € £
has exactly one element.

3-let D = {a,b,c,d)} and R = {1,2,3}. Suppose f: D —»R and
h: R - D are explicitly defined as:

f(a) =2 h(1) = b
£(v) =1 h(2) = a
f(c) =3 h(3) = ¢
£(d) =2

Write out h{f]. Restricting f to the domain {a,b,c}, write
out f[h].

3.3 SOME WELL KNOWN PROPERTIES OF ORDINARY FUNCTIONS

As with sets, an implicit definition of a function is a list of
properties which it satisfies and which specify exactly that function --
no more, no less. Actually, in practice, we often find it convenient
to discuss & whole class of functions, each of which possesses a given
property. It may be worth reviewing a few of these.

In analysis, a very prevalent assumption is that a fuaction is
continuous, or at worst that it has a ®inite number of discontiuities.
You will recsll that, roughly, a real-valued function f of a reul
variable is continuous at the point x provided that whenever y ic =
point "mear to" x, then f(y) is alsc "mear to" £{x). We will not
attempt to make this precise -- which amounts to making precise what
we mean by "aear to"” -- since we shall not use continuity extensively.

A function is said to _ continuous 1f it is comtinuous at every point
x. This is a property vhich msy or may not be met by a function. For
example, the functicn drawn is ‘
Fig. 21 aad defned as: ll
4 X

1

Fig. 21
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0, 1f x < 0
£(x) =
1, if x>0

is a step function with a single discontinuity at x = O. While it is
not continuous, each of its halves are. This makes it comparatively
casy to work with. Not all functions have just & finite number of
discontinuities, and so they are not all built up of continuous seg-

ments. For example, the function f where

1, if x is a rational numbder
f(x) = y
O, if x is an irrational number

which we mentioned before, is everywhere discontinuous. Many of the
functions for which you know "formulas' are continuous: ex, x2, sin x,
etc.; and others have only a finite number of discontinuities:

log x where x > C, 1/x, 1/(1 - x)(1 + x), etec.

Another property which is frequently singled out i'. analysis is
menotonicity -- whether a function is always increasing or always
decreasing. Formally, we say a -eal-valued function f of w real
variable is monotonically increasing if x < y implies £(x) < £(y);

it is strictly monotonically increasing if x < y implies f(x) < f(y).

The step function of Fig. 21 is monotonically increasing, but not
strictiy. For the domain x > O, x2 is strictly monotonically in-
creasing. There are parallel definitions for decreasing functions.
A number of the important functions are neither monotonic increasing

3
nordecreasing: the siase, x° for all x, etc.

In one sence, each of these conditions is fairly weak, for e-=ch
defines « large class of functions having that property. But there
is come narrowing down. If you think only of‘continuous functions,
“be sine is included, but if you stipulate the class of ccntinuous

monotonic functions, then the sine is left ovt. As more and more



properties are added, fewer and fewer functions can be found which
meet all of them -- until, finally, you may cet down to just one
function meeting them or, if you're not careful, to none at all.
We’'ll come back to this, but first let us consider the question of
generalizing these two properties to a broader class of functions.

Neither the idea of continuity nor monotonicity makes much use of
the properties of the number system, which means that it should not be
too difficult to make them meaningful properties for functions with
domains and rauges a good deal more general than the number system. Of
the two, continuity is the more difficult to generalize, and as we will
not need this generalization we shall do no more than say a few sug-
gestive words about it. The only term in our informal definition of
continuity which refers to properties of the number system is "near
to.” 1If we could abstract what we mean by this, then all sets having
a "near to" structure on them would be suitable domains and ranges for
defining continuous functions. Such an abstraction is possible, and
it is known as a topology. Sets having a topology, i.e., a concept of

"near to" defined on them, are known as topological spaces. So far
tovology has found little, if any, direct use in the attempt to do

nathematical work in the behavioral sciences, and so we will not emter

Into it here,

The generalization of monotonicity is much more fimportant for our
purposes here, though it certainly is not nearly so important in
mathematics in general. To define monotonicity, the only property of
the numbers which was required was their ordering, which it will be
recalled is a simple ordering. Thus, it is easy to see that the
generalization can be made at least to those ranges and domeins which
are simply crdered. But if you look at the definition carefully, you
will see that it neither matters whether the ordering is strictly anti-
symmetric nor whether all pairs of elements are comparable or not. We
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are therefore led to make the following

Definition: Let K be a quasi-ordering of the set D and ¥ a quasi-
ordering of the set R. A function f with domain D and range R is

said to be order preserving if for every a,b € D such that a K b,

then £a) & £(v).

(Terminological note: Some authors use "monotonic"” where we have
used "order preserving," but this is not very common in the
literature of applications to the behavioral sciences.)

Order preserving functions are important for this reason: the
image of such a function refiects the order structure of the domain,
and if one knows & lot about the image, then indirectly one also knows
a lot about the domain. The ordered set we know most about is, of
course, the real numbers o.dered by magnitude, and so it should not be
surprising if at some point we attempt to map an ordered set arising
out of a behav.oral science problem into the real numbers. One such
topic is known as utility theory (See Section 3.11). The real number
system is not, however, the only ordered set we kmow something alout
(subsets under inclusion is another ome), and so we skould not be

completely rigid about representing ordered system numerically.

5o far we have introduced only properties which are not very
restrictive, and this is liable to be somewhat misleading. It would
&;dear that we would have to bave very long lists of properties betore
we narrowed ourselves down to s single function. This is not true, and
to illustrate it we will examine two properties, each of which put on
very much tighter clamps. Again, let us confine ourselves to functions
wbhose domains and ranges are the real numbers. Suppose x denotes the
level of some physical varlable, and f{x) some measuie of the response
of a system when the variable takes on the value x. Similarly, £(y)

is 8 measure of the response wien the variable Las the value y. if

we know beth of these quantities, then do we also know the response



f(x + y) when the variable has value x + y? Not in general. But for
some systems, especially in some elementary parts of physiés, the
respoanse to x + y is simply the sum of the responses to x and to y

seperately, i.e.
f(x +y) = £{x) + ©(y). (1)
This is sometimes known as the '"superposition law."

What is eq. 17 Well, first of all, in technical jargon it is
called a functional equation. Clearly it is an equation, but in

contrast to ordinary algebraic equations which it somewhat resembles,
the unknown quantity is the function f, not a number. Loocked at
another way, it specifies a property which must be met by those
functions f which are said to solve it; it narrows down the admissible
range of acceptable functions. Almost any function you can think of
does not have this property. In fact, if you add to eq. 1 the condi-

cion that f be continuous, then it can be proved that
f(X) = aXx, (2)

where a is any constant. It is easy to see that the functions of
eq. 2 do satisfy eq. 1; it is a little more difficult to show that they

are the only continuous functions which do so.

Eq. 1 plus continuity narrow us down to the functions of the
sirple family given by eq. 2. This is far more restrictive than any-
thing we have scen so far. It is easy to see how., by adding a third
property, we can narrow f down to a sinpgle function. All we have to
do is specify the value of f at some point differcnt from ©, for

example, if we set

f(xf}) = f , where x £ 0,



then we see from eq. 2

80,
a = fo/xo.
A unique function has been defined by three of its properties.

As a second, and somewhat similar, example, suppose we consider
those functions 7 with domain x > 0, such that

1-f is continuous,

and
2-f(xy) = £(x) + £(y).

In words, these are the continuous functions that map the operation
of multiplication of positive numbers intc the addition of numbers.
From this you can guess that logarithms are included among the
solutions. 1In fact, it can be shown (and will be later) that they
are the orly solutions that are continuous. If, in addition, the
value of f is specified at any single point other than x = 1, then the
base of the logarithm is specified and so the solution is unique.

The various properties of the logarithm which make it so useful
and which give you the feeling that you can work with it in a way
that is impossible with arbitrarily defined Pu,ctions follow immediate-
1y from the functional equation f(xy) = f(x) + £(y). For example, let
us prove log x® =n log x, where n is an integer. In terms of the
"unknown" f, we want to show f£(x") = nf(x). The method of proof is by
mathematical induction. This method is often appropriate when you have

a series of related propositions, one associated with each integer.
One shows by direct verification, which is often trivial, that the

-91-



proposition is true for n = 1. Next, one supposes that the thecr em is
true for the integer n, and then establishes that this implies it is
also true for the integer n + 1. These two proofs are equivalent to
a proof that it is true for each n, for take any n, then the fact
that it is true for 1 implies that it is true for 2, that it is true
for 2 implies it is true for 3, and so on until you get tc n. For
our functional equation, the assertion is trivially true for n = 1.

We suppose it is true for n, and attempt to show it for n + 1. From
the functional equation,

fix

( n+ l) f(x'xn)

= £(x) + £(x").

Substituting the induction hypothesis that £(x") = nf(x) we find,
n+1 n
X ) = £(x) + £(x7)
£(x) + nf(x)
(n + 1)f(x).

£(

"

il

So, we have shown that you can get to some of the ordinary
functions of analysis by an implicit definition in terms of their
properties. Indeed, we would claim that this is the basic way such
functions are defined, but the fact that they are very familiar and
that you can use them easily in calculations tends to mask this.
Anything you know about the logarithm can be derived from the two
properties we have stipulated. For example, if you choose a value
for the base -- a value of f for some x # 1 -- then it is possible
to compute f for any other value of the argument. This is, in fact,
one way to prepare a log table. We are not, of course, denying that
the logarithm can te shown to be equal to a number of other expressions,
wvhich in some contexts are taken as its definition. ‘or example, it is
well known that

.
-



To show this from our definition it is necessary to show that the
expression on the right is continuous (which is trivial since all
integrals sre continuous) and that it satisfies the functional
equsticn for the logarithm. Of course, it is extremely useful to
know that this integral and the logarithm are the same thing, and
much of elementary methematics is devoted to such equalities. It
amounte to showing that an implicitly defined function sometimes

can also be defined as a combination of previously defined functions.

Problems

1-In problem 2 of the last set you showed that a necessary and
sufficient condition for a function f to have an inverse is
that [d| d € D, (4,r) ¢ £] 15 a single element set for every
r € R. Can you think of a simple equivalent condition (in
terms of the properties defined in this section) when f is a
real-valued function of a real variable? Prouve your answver.

2-Using only the property f(xy) = £(x) + £(y), show £(1) = O.

3-Consider those real-valued functions of a real variable which
satisfy the functional equation f£(x + y) = £(x)£(y) and are
not identically 0. Show £(0) = 1. Can you think of any
function satisfying this functional equation?

L-Use mathematical induction to show 1 + 2 + 3 4.4 0 = Eﬁgﬁ%¢£l.
3.4 DIFFERENTIAL EQUATIONS

Beyond a doubt, the most familiar way to get at functions of
importance in physics is via differential equations. To many, this
method seems superior to all others. Certai.ly, it is a field which
has received intense study for several hundred years and many of its
results have been reduced to handbook simplicity. 4&lthough such detailed
knowledge is very useful in practicc, it hwas dblinded some to the true
nature of the method involved. We wish to discuss this method briefly.

Iet us suppose, as an example, that we are interested in the
number of radicactive atoms which rave not yet decayed at time t
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assuming that we began with N such atoms at time O. Iet this unknown
number of atoms be denoted by f(t). The first important thing to
recognize is that we have no immediate precise grarp on the function
f. Our intuition tells us that if ﬁ is very large, then we will not
get into serious trouble if we suppose f is continuous. Furthermore,
the very concept of radioactivity insures us tnat £ will be a
mconotonically decreasing function of time, but beyond that we have
little immediate feel for f itself. The second important point is that,
while we do not know f directly, we can say certain things about t and
functions of f from physical principles. In particular, it can be
shown that f has the property that its rate of change in time is pro-
portiocnal to its value, i.e.,

&6

= -kf, where k > O.

It 1s well known that this differential equation is solved by
£{t) = Aexp(-kt),
where A is a constant. Now, introduce the initial condition
£(0) = N,
then we get ‘he unigque solution
f(t) = Nexp(-kt).

All of this is trivial and very well known. But suppose you place
yourself in the shoes of the scientist who first arrived at such an
equation from some physical process (certainly not radiocactivity, but
that is of no matter). You know nothing of the theory of differential

equations, for it has not yet been formulated, but nevertheless you
have posed this problem: to find those functions f of time which



satisf{y the following properties:

ar _
it —
£(0) = N

-kt

(Note: by writing the first equation, we implicitly impose the
condition that it is meaningful, i.e., that f is everwhere differenti-
able. It is well known that this implies that f is a contimuous func-
tion of time.) Given this problem, what would be the first question
you would ask? If your answer is 'what is the solution"” or some
variant of it, then we doubt that you have really placed yourself in
this early scientist's shoes. You know that there is a solution and
you would want to find it. He, however, would not have known immed-
iately from the two properties he had written down *+hat a solution
exists. It is not, when you think about it, completely obvious that
these two peculiar conditions are necessarily satisfied by any
function f. TFor instance, had he set up the problem to find those f's
which satisfy

ar
= ~kf

s
Ef
-—2=Ct
dt

then he could not have found a solution.

No, his first task would be to assure himself that he had in fact
posed a soluasble problem -- to show the existence of a snlution. To be
sure, he might do this by demonstrating that the exponential is & solu-
tion, but what if he did not have any hint that this was so? It can be
Juite futile to try randomly one function after another. Furthermore,
he might realize that his was but a special case of & whole class of
similar problems, and so he might be tempted to use indirect methods to
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show once and for all the existence of & solution for each member of
the class of differential equation problems. In fact, this is the
reason that you don't have to worry about the existence of solutions
to most of the equations which arise ir physics and engineering. It
has been done for very general classes of differential equations.
Advanced courses in differential equations are very largely concerned
with such questions.

Once having established to his satisfaction that the problem posed
is solvable, then one might suppose that his next task would be to
exprecs the solution in terms of kncwn functions. But again, this is
doubtful. By what stretch of the imagination could he suppose that
there is only one function satisfying the conditions he has posed?

This is not to deny that we know that there is omly one solution to a
first order linear differential equation plus one initial condition,
but is it obvious from just looking at the two conditions? Thus, you
might expect that his second task would be to snow that the solution is
unique. Again, this is something which can be done without knowing
the functions which solve the problem, and it can be done once and for
all for broad classes of differential equations. It is because this
has been done in the mathematical literature, and not because it is un-
important, that the engineer and physicist need not be much concerned
today with uniqueness problems.

In any characterization of & function by properties which it must
gatisfy -- differential equations are one special case -- the two
questions of extence and uniqueness are of primary importance. In the
applications of mathematics to the behavioral sciences which we shall
mention, it will be necessary for us to deal explicitly with these
questions, for we do not have a comprehensive general theory of exist-
ence and uniqueness of functions on which to fall back. Once we have
done this, then we may want to worry about describing the function in
scme other terms. This is what a solution to a differential equation is.
It is customary to say that we have solved a differential equation if



we caa express the solution in the form of integrals of known functions.
Outride that realm, the criteria for what const.tutes an acceptable
representation of a solution are far vaguer, and a certain amount of
Judgment is needed. In some cases, we are satisfied with a demonstra-
tion of existence. 1In others we need to have practical methods to

find certain values of the function.

To return to our hypothetical mathematician, once assured that a
solution exists and having begun to worry about uniqueness, he might
well conjecture that it is not wiqus. Such a cmjectuwrs would be correct
if at first he only set up the differential equation without the
initial condition. Any function of the form Aexp(-kt) is a solution
to the differential equation alore. This is, of course, well worth
knowing, for .t tells you that all solutions are fundamentally the
same shape and differ only by a scale factor. Put another way, the
ratio of two different solutions to this differential equation is
some constant. Not only is that a compact statement of the situation
described by the equation, but it also suggests the nature of the
condition which has to be added to render f unique.

Thus, if you set up some properties to describe one or more
functions and you find more rather than one, then the next thing to
do is to try tc find out how two different solutions are related to
each other. This mears that you want to describe the transformations
which map ci. scluticn into the others. Ideally, but not invariably,
the class of transformations which describe how to go from one
solution to the others bas certain nice closure properties: any
transformation from the class maps a solution into a solution, and
any two solutions are related by one of the transformations in the
class. In this case, the mathematician's problem is to give a compact
description of this class of transformations and of one of the

solutions.

In summary then, our mathematician first working on this differential
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equation problem would have had to do the following things:

i-show that a solution to the problem exists,

2-determine whether it is umique or not, and

3-if it is not unique, ascertain how the several solutions are
related to one another.

There is nothing about these three steps which rests upon the fact
that his was a differential equation problem. The same questions are
meaningful and important whenever a function is defired implicitly by
properties which it must meet. As we shall see in the following sec-
tions, some of the terminology is a little different when we work in
a more general context, but the ideas are not different.

3.5 AXTIOMATIZATION AND INCONSISTENCY

The first question when a function is implicitly defined in a
context different from the real numbers is: what context? The
mathematical nature of both the domain and range of the function must
be described. Usually, this becomes apparent from the verbal formu-
lation of the problem in question and from the aims of the analysis.
Nonetheless, it is an extremely important step which determines to &
surprising degree the success or failure of the effort. For example,
it has sometimes happened that an apparently intractable or very
nessy problem is made very much simpler by an appropriate change in
the domain or the range. In any event, these two things have to be
specified precisely at the outset. (By and large, in engineering
problems both the domain and range are the real numbers and usually
this is taken for granted without any comment.)

Once that is done, then appropriate properties of the funection
must be spevified. Without & doubt this is the most difficult part
of the task. It is a subtle art, requiring both a considersble
sophistication in mathematics and a perceptive understanding of the



physical or behavioral situation one is trying to abstract. Mathematical
experience is needed so that the problem formulated will lead to
suitable and interesting mathematical results, and the substantive
problem must be well grasped so that the mathematics reflects it

rather than some other problem. The interplay between these two

demands is most tenuous and only rarely is there a fruitful union.

For the traditional problems of rhysics, it now secems camparatively
simple to set up such conditions, for there are thc known laws of
paysics to be drawn on. So far there are precious few laws, or even
hints of laws, in the non-physical sciences, and one is forced to
considerations which differ considerably from those used in physics.
Among these are: unconfirmed or only partially confirmed guesses as

to the laws operating, assumptions as to the statistical independence

of two processes, ethical and normative demands, and a priori demands

on the nature of scientific measures. Some of these will be illustrated
in our later examples.

In any event, a list of properties of the unknown function is
Presented. When speaking in the general context, these properties are
known ag axioms, and the set of them as an axiom system for the un-
known function. The whole activity is called axiomatizing a function

or giving an a¥ ~matic definition of a function. While such terminology
is rarely appleu to the mathematics of physiecs, we could say that the
differential equation and its initial condition mentioned in the last
section are each axioms which together characterize a specific exponen-
tial function.

The first problem, as we said, to be posed of any axiom system is
existence: does there exist a function satisfying all the axioms.
Again, in the general context, the language is a bit different. Often
one does not speak of the exisience of a solution to the axiom system,
but rather of the "consistency" of the axioms. Also one speaks of a
function "satisfying" them. If there is no inner contradition among
the uxioms, i.e., if there exists a function which satisfies all of

1.



then simultaneously, then the axiom system is said to be consistent.
If they are contradictory, they are said to be inconsistent.

A trivisl example of an inconsistent system: Suppose D = {1,2,3)
is simply ordered by magnitude and R = (1,2} is also simply ordered by
magnitude. Problem: to find any functions f: D — R satisfying the
axiom

if x,y € Dand x < y, then £(x) < £(y).

It is easy to0 show that no such function exists -- that the axiom is
inconsistent (with the domain and range) -- for by two spplications
of the axiom we have

1< 2so0 £(1) < £(2)
2< 380 £(2) < f(3),

hence the range has three distinct points, contrary to assumption.

A less trivial example: When we introduced the conc.yts of union,
intersection and inclusion of sets, we drew some parallels with ora.:.+y
addition, miltiplication, and inequality. We already know that the
parallel is far from perfect, but it would be interesting to see how
far it goes. The following problem sets up one of the simplest analogies
that might be possible. Suppose U is a set with two or more elements,
D= QU, and R = real numbers. To find those functions F: D =R such

that the following axioms are met:
1-if A,Be Dand AN B =0, F(AU B) = F(A) + F(B);
2-1if A,B € D, ¥{A n B) = F(A)F(B); and

3-if A,B € Dand A # B, then A B implies F(A) < F(B).

We claim that this axiom system is inconsistent. A proof goes as
follows. Fram axiom 1,
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FU) = F(u v ¢) = F(U) + F(¢),
hence F(¢) = 0. For any A € D, axiom 2 states
F(A)= F(a 0 4) = F(A)%,

go P(A) =0orl. IfA# ¢, axiam 3 implies F(A) = 1. But since U
has two or more elements, there is at least one subset A different
from U and from ¢, so AC U and F(A) = 1 = F(U), vhich is impossible
by axiom 3. Thus the system is not consistent.

Although the first example was campletely trivial, and the second one
not very difficult, they both illustrate the basic procedure involved
in showing an axiom system to be inconsistent. Owr next section is
devoted to a more complicated and interesting inconsistent axiom
system. It arose in velfare econamics, and it is interesting msinly
because one does not at first suspect the axioﬁs to be inconsistent.

Problems
1-In the last example, suppose we drop axiom 2. What function

satisfies axioms 1 and 37

2-1et D and R be the real numbers, and £f; D - R. Show that the
following three avioms are inconsistent:

1.8(xy) = £(x) + £ly),
i1.0(x + y) = £{x)f(y).

iii. £ bhas at least two different values,
(Note: do not assume £ is continuous.)

#3.6 THT ARROW SOCIAL CHOICE PROBLEM
Roughly speaking, the concept of a fair social decision is one

which is arrived st by taking inte account equally the preferences of
each (adult) individual for the several alternastives thst have arisen
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or thatl are presented by the leaders of the society. It amounis to a
rule that ensbles society to pass from the 'votes" of the individuals
to a social decision, but not just any rule. The rule must be "fair;"
it must "take into account equally’” the preferences of each of the
individuals. The problem is to agree upon what we mcan by "fair."
What properties characterize a fair rule? Once we have agreed upon
that, then we can investigate mathematically those rules which satisfy
these properties and we can ask whether particular rules in common
use meet them. If not, then where do they fail and is this important?
For example, the rule most commonly used in Western societies is simple
majority rule. Does it satisfy our intuitive ideas of fairness?

Such prcblems have been discussed for some years in the

literature of political science and welfare econamics, but not until
1951 wvas one formulated and attacked as a mathematical problem. This
work, and a sketch of the background of the problem, can be found in

K. J. Arrov's Social Choice and Individual Values, John Wiley and Sonms,
New York (1951). This important book attracted & good deal of attention
and resulted in not a little controversy and misinterpretation; as a
result there have been a dozen or so journal publications on the problem
since then. The formulation we 3shall present, which in many ways is

simpler than Arrow's presentation, is based upon one of these papers:
Weldon, J. C., "On the Problem of Social Welfare Functions,"” Canadian
J. Econ. and Pol. Sc., 18, 1952, k52-L63.

We begin with two known sets. First, the finite set A of m
distinet altermnatives presented to society. Second,the finite set I
of n individuals composing the society, which may be as small as a
three-man committee or as large &s the whole electorate of a nation.
We shail suppose that each of the individuals 'votes” on the altern-
atives in A and these votes are entered into a "machine,"” which will
be described below, out of which comes the social decision. We must
now translate into mathematical terms what we shall mean by 'vote”
and by "machine."
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We shail not mean by "vote" what you expect -- the selection of
the most preferred alternative. Rather, we shall suppose that each
person orders the vhole set A according to his preferences. This gives
& good deal more information about his preferences than Just the selec-
tion of his most preferred alternative, and it should be desirable to
utilize this added information in one way or another when reaching a
social chcice. Now, what do we mean when we say he orders the
alternatives? We take this to mean that ecci person rank orders
them, i.e., he states which alternatives is most preferred (say, by
ranking it 1), which is next most preferred (by ranking it 2), ete.

We will also allow him to report that he is indifferent between

pairs of alternatives if he chooses. In terms of our previous termin-
clogy, the reported preference orderings will be weak orderings of A
(see section 2.7). Thus, for example, if A = {a,b,c,d), then an
admissible preference ordering is for a person to say he prefers

b to a,c, and 4, a to c and d, and that he is indifferent between

¢ and 4. In other words, he rank orders them b,a,c - d. The follow-
ing preference pattern, however, is not admissible: a is preferred to
cand 4, btoaandc, ¢c tod, and d to b, It is not admissible be-
cause it is a non-transitive relation: a is preferred to d, d to b,
and b to a.

On any given set A a number of different weak orderings are
possible, the number incressing very rapldly as the size of A increases.
Nonetheless, we shall have to deal with all of the possible weak order-
ings of A; let us call this set of weak orderings W. Our supposition
then is that each person selects exactly one element from W, i.e., he
voles in the usual sense of the word for just ome of the weak orderings
in W, and this selection is fed into the ‘machine"” for making social
decisions.

This leads us tc the second question, what do we mean by the word

‘machine” in this context. Whatever its detailed physical realization,
it must have this property: for any selection of n weak orderings from
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W, one by each individual, it comes up with a social decision based
upon them. That is to say, it is a function whose independent variables
are the weak orderings selected by individuals and vhose dependent
variable is the set of possible social decisions. We must make this
more precise.

First, let us consider the independent variable -- the domain --
of this function. When the individuals each select a weak order -- say,
1 chooses Rl, 2 chooses Ra, +«+, n chooses P\u -- then the whole society
has chosen an n-tuple (31’32’ '”’Rn)’ vhere each R, € W. In other
words, the whole society has chosen an elament from the product set

¥ =W>xW>x ... >xW (n times).

Since each individual is free tc choose any of the weak orderings of
A, 1.e., any element of W, the society as a whole can select any
element from the product set ¥.

Once society has selected an element from the product set ¥,
then the role of the 'machine" is to reduce this complex of informstion
into some sort of decision about the alternatives in A. At the very
least, the machine must transform such an element of ¥ into an element
ot W, {.e., into a weak ordering of the elements of A. Thus, we take
the range of the function to be W. Any function with domain W and range
W will be called a socisl function.

In sumoary, then, the framework of our problem is this: A set A
with m elements and a set I with n elements are given. W is the set
of all weak orderings of Aand f{ =W>XW> ... < W (n times). A
function F: ¥ »W will be known as s social function. For convenience,
we shall denote by R the generic ordering selected by the social
function F, i.e.,

R = F(RI,RE,...,Pn).
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You will recall that in section 2.7 we showed how any weak ordering
R can be broken down into a "strict preference"” ordering P and an
"indifference” relation I, which were defined as follows:

aPb if and only if aRdb and dRa
alb if and only if aFb and bRa.

It Ri denotes a weak ordering, the corresponding P and I relations will
be denoted by P& and Ii'

Now that we have set up the general framework of the problem, our
next task is fo arrive at conditions on the function F such that it
can be called "fair,” This will be most easily dome by introducing an
suxiliary concept defined in terms of F, and then stating the condi-
tions of fairmess in terms of this concept. We suppose that F is a
fixed social function and we let V denote a subset of individuals,
i.e., VCI. If aand b € A, then the set V can be considered decisive
for alternative a against b provided that whenever all the members of
V prefer a to b and everyone outside V prefers b to a, then society
prefers a to b. Stated formally, the subset V is said to be decisive
for a8 against b if F has the property that if

aPib, for a1l 1 € V
and

bP&, for all i ¢ v
then

aPb.

We shall now formulate the four conditions of "fairness,"” the last
three being in terms of decisive sets. The first three are not partic-
ularly controversial and will be relatively easy to agree upon, bdut

the last one will require more discussion.

The first axiom only requires that both the set of alternatives

-105- |



and the set of people be adeguately large to have an interesting

-

pobliem.
Axijom 1. The sets A and I shall each have three or more elements, i.e.,
m>3and n> 3.

The second axiom simply says that whenever there is unanimity in
society between a pair of alternatives, then the social function shall
reflect this unanimity.

Ixiom 2. For any pair of aiternatives, the set I is decisive.

Our third requirement of fairmess reflects the generally accepted
belie? that there should not de a dictator -- & person whose preference
alone for vne altermative over another commands socieiy to have *he
same preference.

Axiom 3. If i ¢ I, then {i) is not decisive for any pair of alternatives.

The next and last condition will bear considersble more discussion
before we state it, for it is much the strongest and most controversial
of the exioms. Suppose the n weak orderings (Rl, Ry) ...,Rn), one from
each individual, leads to the social ordering R according to a given
social function F. Let us now focus on two alternatives a and b, and
let us suppose that society prefers a to b. The last assumption does
not really result in any loss of generality, for we can always intex-
change the labels on the alternatives. Within society, a certain set
of'pecple will have stated that they prefer a to b, another set that
they are indifferent between a and b, and the remainder that they prefer
b to a. Amcng the other possible pairs of alternatives, each individual
will have reported same pattern of preference. Question: should society
ever change its preference for a over b if all the members keep their
preferences between a and b, but alter some (or all) of their preferences
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among the other alternatives? Put another way, if the individual
Preferences between a and b are held fixed, but those among other,
irrelevant, alternatives are changed, should there ever be any change
in the social decision concerning e and b?

The major argument for answering No is this: 1If the social
decision between a and b also depends upon how individuals order the
other alternatives, it may well be worthwhile for an individusl to
misrepresent his true prefexences in order to put extra weight on an
alternative sbout which he feels strongly. Just how he should
misrepresent his preferences in order to emphasize a particular
alternative will depend upon the function F and upon the preferences
expressed by the other members of society. Thus, one enters into
the complex domain of strategic considerations where decisions depend
upon estimates of what other individuels are going to do. To be sure,
this is not a real objection when n is extremely large, but in small
committees it can become a sericus problem. For this reason, it is
argued, the social function should have the property that it is
independent of irrelevant alternatives. We state this formally as

Axiom 4. If, for some (Rl’Rg""’Bh)' F has the property that

aPib for 1 € V,
bP.a for i € V, and

aPb,
then V is decisive for a against b.
Any social function satisfying axioms 1 through &4 is called a

social welfare functicon. Arrow's principle result, known as his
imposseibility theorem, states that there is no social welfare function,

i.e.,

Theorem. Axioms 1 through 4 are inconsistent.
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Proof. We shall suppose that a social welfare function exists, and
then show that this leads to a contradiction. Specifically, we shall
uwse a "downward" mathematical induction, starting with the set I, to
show that there must exist a single element decisive set, which is
contrary to axiocm 3. To do this, two steps are invelved. First, we
must es ablish that the set I is decisive, but this is assured by
axiom =. Second, we must show that if there is a decisive set with g
elements, where 2 < q < n, then this implies there is a decisive set
with q-1 elements. Together, these two statements imply that there is
a decisive set with one element, which violstes axiom 3. So {oc prove
the theorem, we need only prove the induction step.

Suppose "q is a set with q elements which is decisive for some
element a against some element b of A. Let O be any element of Vq‘.

and define Vq_l = Vq - {a}. Vq_l # P since q > 2. According to

to axiom 1, there is at least one element in A different from a and b;
let ¢ be one such. We will now show that Vq—l must be decisive for a
against ¢, which will prove the induction step and so the theorenm.

Consider any n-tuple of weak orderings (Bl,ﬁz, ...,Rn) which include
the following strict preferences:

i. sPib, bPic and a.Pic for 1 € Vq_l,

i1. cPaa, a.Pab and cPab,

iii. bP,c, cP

g and bP,a for j € V_.
J q

J J

Define R = F(RI’RE’ ...,Rn). We claim that aPb and bRe. First, wve
have assumed that Vq is decisive for a against b and we have-chosen
the orderings Ri such that a.Pib for 1 € V'q and ija for § € Vq, 80 aPb,
To show bRc, we suppose this is not the case, i.e., cFb. But observe
that by choice of the Ri’

cP b and bP,c, for i # a,
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hence according to axiom 4 thic would mean {Q) is decisive for c
against b. As this violates axiom 3, we must conclude that bRe.

Since R is a weak ordering, aPb and bRc imply aPc. But, by
choice of the Ri‘

aP.c, for1 €V

s and cP,a, for 1 ¢ V
q—

q-1’ i 1’
Thus, axiom 4 implies that Vq_l is decisive for a against ¢, as was
to be proved.

As we pointed out earliex, the truth of the induction step implies
the existence of a single element decisive set, which is impossible.
Thus, our original assumption that a social welfare function exists
is untenable, and the theocrem is proved.

Many people have found this result disconcerting because they have
been willing to agree to each of the four conditions as necessary
requirements of "fairness" and at the same time have felt certain
that & "fair" machine (function) could be devised. The fact of the
matter is that this is not so. Once convinced, some emotionally
reject the whole process and head to other activities; others become
intrigued with the question whether the problem has been unfortunately
formulated and whether some modificatian might not result in positive results,

Such research is currently going on and some positive results have
been obtained. Although we cammot go into this work, the three major
directions 1t has taken can be indicated. The first is to question
the whole formulation of the problem in terms of weak orderings.
Basically this amounts to a total recasting of the problem. The second
direction rests upon the empirical observation that in any given culture
it is unlikely that all possible combinations of preference patterns
will ever arise. There are usually strong correlstions among the wesak

orders registered by the members of the same society, and so in
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Practice we are asking too much when wve demand that F be defined over
the vhole of ¥. It will generslly suffice to know F for some subset
of ¥. The tricky task is to choose & suitable subset: one that seems
to include all cases which arise empirically and, at the same time,
leads to a mathomatically tractable problem, There has been

same success in this direction.

The third major tact is to drop the condition of the independence
of irrelevant alternatives (axiom 4). This permits the participants to
enter into strategy considerations when repcrting preferences, but in
many contexts this does not really seem relevant or important. However,
it 1s not sufficient just to drop axiom 4. It must be replaced by
some other condition, for one can easily produce examples of functions
meeting the first three axioms which &re impossible to consider "fair"
social functions (see problems 2 and 3 below).

#Problems

1-In a democratic society it is often claimed that majority rule
is a "fair" method to reach social choices. The function F
representing majority rule is defined as follows:
aFb 1f and only if [4| 1 € I and aP,b] has more elements
than [1| 1 € I and bP,a].

alb if and only if these two sets have exactly the same
number of elements.

Arrov's theorem asserts that this function cannot be “fair"
in the sense of being a social function which meets axioms
1 through 4. Where does it fail? Prove your answers (examples
of violations will suffice).

2-let n = 3 and let A = (al,ae,...,am}. Let S denote the weak
ordering of A in which & is strictly preferred to 8, &, to 33,
etc. Let S* denote the converse ordering where & is striectly
preferred to 8,17 &1 to a o etc. Let F be defined as

follows:
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le, if R # 8 or S*
F(Rl,Ra,RS) 132, if R) =S or 5* and R, # S or S*
&3

,ile=SorS*andR2=SorS*.
Show that F satisfies axioms 1, 2, and 3.

3-Let F(3 ) denote any function satisfying axioms 1, 2, and 3 for
a given A and n = 3 (by problem 2, at least one such function
exists). Show that for the same set A and n >3, the function

F;(n) defined below also satisfies the first three axioms:

F(n)(RlxRQ: "'1Rn) = F(3)(R1:R2:R3)-
3.7 CONSISTENCY AND UNIQUENESS

In general, one does not try to construct inconsistent axiom
systems, for one is usually trying to get at functions which mmeis
pretty sure exist. Proofs of inconsistency serve primarily to show
either that one's intuition has been in some way faulty and that the
axiomatization does not really capture what was intended, or that what
people have been talking about is non-existent. These are both
important services, but they give neither the author nor the reader
the same comstructive satisfaction as yielded by a positive result.

To show that an axiom system is consistent, two general methods
are available. Either one can exhibit a function which satisfies
the axiom system, or one can devise a proof which shows that there
mist be such a function even though one is not explicitly produced.
Simple examples of the indirect method are not eusily come by; at
least we have not thought of one. The direct method assumes one of
two forms. First, the axioms can be manipulated in such a way as to
derive a necessary mathematical form for any function satisfying
them, and then it is shown that this function (or functions) does in
fact satisfy the axioms. It is important that this last step be
carried out, for fram an inconsistent set of axioms one can sometimes
derive a necessary functional form,which nonetheless cannot satisfy

I



them. There is a tendency to forget to make this verification.
Second, a function may be mroduced (usually preceded by the phrase
"Consider the following...") and then it is shown that it satisfies
the axioms. Often such functions are complicated, and one wonders
from whence they spring. Ususlly, the author is hard pressed to say;
be will have drawn up on his mathematical experience, or had some
insight into the problem, or tried other functions and gradually
modified them into the correct one, but, above all, he will have had
some luck. There is no set of rules that can be set down.

As an example, supyose the question is raised whether the functioral
equation

2(xy) = £(x) + £(y),

where £ is a real-valued function of a real variable, has a sclution.
It will suffice to produce one. Consider the function f, where

£(x) = X8 |
1

Observe that if the change of variable u = ty is made, then

o) = [ W

Yy
80
Xy y
rx) +2(y) =/ WL &
¥y 1
-
1 u
= £(xy).



Thus, the given integral is a solution to the functional equation.

In whatever wgy existence has been established, ance it is dme then
questions of uniqueness arise. For instance, is the solution given
above the only one to that functional equation, or are there others?
The answer is that there are others, but as we shall see they must
be discontinuous. Roughly, there are two general procedures to
establish uniqueness. One can manipulate the axioms to derive the
necessary form of the function, and if this necessary form is unique,
then ve know that if there 1s any function satisfying the axioms at
all, it must be unique. As we stated sbove, one must actually show
that the necessary form for the solution is in fact a solution. The
other method, which we shall illustrate, begins with the assumption
that there are two solutions and shows that they must actually be the
same. Ore does not need to have an explicit representation of any
solution tc the problem to use this method, which is often an
advantage.

Suppose f is a real-valued function of a positive real variable
which satisfies the following axioms:

Aiom 1. f is continmuous for x > O,
Axiom 2. fxy) = £(x) + £(y),
Axiom 3. f(xc) = £, where f_ is & constant and x # 0 or 1.

We show that f is unique. TFirst, we show that any function
satisfying axioms 1 and 2 has the property that £(x°) = yf(x), for
any real and positive y. If y is an integer} n say, then from section

3.3 we know that £(x") = nf(x). Now, suppose we let x = z°, then

£(x) = £(z%) = nf(z),
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50
2(z) = £zP) =1 2(2).
Thus, if m and n are integers, these two results combine to show
£(:2/2) =2 £(x).
But it is well known that if y is any real number, then we can choose

integers m and n such that m/n is arbitrarily close to y. Thus, by
the continuity of £, it follows that

£(x”) = y£(x).
Now, let us suppose that £ and £' ar~ any two functions satisfying

axioms 1, 2, and 3. We show £ = f'. Any point x can be expressed in
thetbmmxoyforsma.ppmpriatey>0, 80

f(x! f(xoy)
£'(x £ (xoy)

ye(x,)

-~

Thus, £ = f', or, in other words the functim satisfiying the three axioms
is unique.

Two examples of consistent axiom systems which are satisfied by a
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unique function and which have arisen in the behavioral sciences are
given below. The derivation is given only in the first case.

%3.8 THE INFORMATION MEASURE

A postwar development that bas attracted a good deal of asttention
is the mathematical theory of communication. It arose out of
electrical commnication problems, where it has been widely used and
elaborated, and its basic formulation is due largely to the work of
Wiener and Shannon. A standard reference is: Shannon, C. E and
Weaver, W. The Mathematical Theory of Communication, University of
Illinois Press, Urbana (1949). lLargely because it really is a (special)
theory of statistical inference, it has had considerable impact outside
the area of electrical communication, especially in psychology. For a
fairly comprehensive survey of both the theory and its applications
to psychology, see: ILuce, R. D., A Survey of the Theory of Selective
Information and Some of its Behavioral Applications, Technical Report
No. 8 (revised), 1956, Behavioral Models Project, Columbia University.

We cannot go into any of the details of the theory here except to
derive the mathematical form of the central function employed. This
function is interpreted as a measure of the "average amount of
information transmitted" by messages in a commnication system, where,
however, these words have a meaning which, though rasonable, is
samewhat different from common sense usage. The measure is often
called the "(average) amount of information transmitted," but the
shorter labels "entropy" (because of its formal identity to the
expression for physical entropy in statistical mechanics) an’ "uncer-
tainty"” are widely used.

Consider the following idealization of many communication systems.
A set A of n alternatives is given, and from it messages are formed
by successive temporsl selections (with replscement). For exmmple, /
might represent an alphabet and the successive selections are used to
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form words and sentences. Such messages are then transmitted through a
commnication system, which involves certain physical components, to

its destination. Let us consider the arrivel of such a message from the
point of view of the person (the destination) receiving it. He is rarely,
if ever, certain wvhat symbol he will next receive, for if he were com-
Pletely certain it would be pointless to transmit it. No information
will be ocmveyed when the receiver is able to predict with ocertainty

vhat he will receive, But ame should not jump from this to supposing that he
must be completely uncertain as to what he will receive. If the person
is sending the message in English, then the receiver knows a priori that
the probability of receiving an "e" is a good deal larger than the
probability of receiving a "z". Such knowledge is known to everyone
spzaking English, and it is continually employed vhen inferring the
symbols sent via a channel which introduces some distortion, as in

noisy telephone communication.

Thus, in general, we can suppose that there is a known probability
distribution over the elements of A vhich describes the a priori
probability that each is selected. Suppose that A = (1,2, ... n),

vhere the mmbers are simply labels for the elements in A. The
probability distridbution is then some set of mumbers

P(l): P(a);"': P(n)
with the properties

p(1) >0, for i =1,2,..., n

p(1) + p(2) + ... p(n) = 1.

But this is hardly enough to describe the statistical structure of
most sources of messages. For example, in any natural language the
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selections made are not independent of each other. You know in
English that if you receive a "g," the probability is pretty close*

to 1 that the next letter will be 'u), even though '"u'" has a very low

a priori probability of occurring. We will, however, ignore this
observation and meke the assumption that we are working with a source
in which successive selections fram A are statistically independent.
That is to say, the probability of selecting element i ¢ A i1s p(1) no
matter what has preceded it. No doubt this appear to be an excessively
restrictive assumption gsince it seems to eliminate all natursl
languages from consideration, but in point of fact it turns out that

it is easy to extend the information measure for independent selections
to non-independent selections. For example, if the dependence extends
only to the immediately preceding symbol, then we work with the joint
probability distribution p(i,J) defined over the product set A >< A.
But this is still a probability distiribution over a set, albeit a
special set, and so it will have been included in our study of the
independent case.

As we suggested before, no informmtion can be transmitted if ome
of the symbcls in A is certain to occur, i.e., if p(i) = 1 for some
i € A. Furthermore, as the symbols become more and more equiprobable,
then more and more information can be transmitted. For example, if A
has only two elemcnts, 1 and 2, and if the probability of 1 being
selected is 0.9, then more information is transmitted on the average
than when the probability is 1.0, i.e., when none is transmitted. But
suppose the probability is dropped down to 0.8, then isn‘t it more
revealing to receive the symbol 1 than if the probability had teen 0.97
Extending this argument you see that for two symbols the maximum
information must be transmitted when each has probability 0.5, i.e.,
when they are equiprobable. 1Is it suitable to take the probabilities as
a measure of the information transmitted? And if {t is, what probabil-
ity or combination of probabilities should we employ when A has three

¥
Words such as "Iraq" prevent it from being exactly 1.
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Or more elements? Since any proposal one might make would seem
totally ad hoc, one is led to consider reasonable properties for such
& peasure of the average amount of information transmitted and to see
wvhether or not this singles out a particular measure. This we do.

First of all, since we are speaking of a measure, we mean a
function vhich has the real numbers as its range. Second, since we
bhave spoken of it as a measure of the average amount of information
transmitted, we presumably mean that we shall find a value of the
function for each alternmative and then take the average of it over
&all the altermatives in A. But each alternstive i is characterized
by its probability p(i) of occurring, so the function depends upon
that. So the measure is a real-valued functiou f with domain the
real interval from O through 1. Already we have made a very strong
assumption, one which is similar to the condition of the independence
of irrelevant alternatives in the Arrow social choice prodblem. We
have not only said that the measure of information transmitted by a
selection of the symbol i depends upon p(i), but also that it depends
only upon p(i). The distribution of probability over the other
alternatives is completely irrelevant!

Accepting this, we now introduce three axioms. First, it seems
plausible that if p(i) is changed only slightly, then the amount of
information trensmitted should also change cnly slightly (though not
necessarily proportionately). Thus, we impose

Axiom 1. f shall be a continuous function of p(i).

Suppose that two successive selections are made from A, say i and
then j. Since we have assumed that selections are statistically
independent, we know that the probebility of the joint occurrence
of 1 and then j, (1,3), is simply given by the product of the
probtabilities of the individual occurrences taken separately, i.e.,
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p(1,J) = p(1)p(3).

Furthermore, given that the selections are independent, it seems
plausible that the total amount of informstion transmitted is simply
the sum of the amount trensmitted by 1 and the amount transmitted by

J. This is reasonable only because they are independent. We would not
vant to say that the amount of informetion transmitted by (q,u) in
English is very different from that transmitted by q alone -- certainly
it is not as much as the sum of q and u taken separately. But since we
have assumed independence, it is reasonable to impose

Axiom 2. £[p(1)p(J)] = £lp(1)) + £Ip(3)].

Finally, in any measurement problem it is necessary to agree upon
some unit in terms of vhich measurements are made: centimeters for
length, seconds for time, grams for mass, etc. In this field it has
proved convenient to say that one unit of information has been trans-
mitted whenever a selection occurs between two equally likely
alternsti\res. The unit is called a bit. Thus, we have

Axiom 3. £(1/2) = 1.

These three axioms should look familiar, they are the same as
those we set up in the preceding section. So we know that there is
a unique function satisfying taem, wvhich must be the logarithm to
some base vhich is determined by axiam 3. It is easy to see that it
is the base 2, i.e.,

£(p) = -10g,P.

Now if we take expected values over all the elements in A, we obtain
Shannon's famed expression for the aversge amount of information
transmitted:
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n
-p(l)logep(l) + p(e)logep(2) tooe + p(n)logap(n) = ;Ej. p(i)logep(i).

In terms of this concept and two others -- channel capacity and
noise -- Shannon was able to prove scme extremely interesting and very
general theorems concerning the possibility of transmitting messages at
certain rates and with certain accuracies. Roughly, he gives a precise
numerical meaning to the intultive idea that we can trade accuracy for
speed and conversely, but we cannot enter into these questions here.

Before ending this section, we should mention that Shannon's
original derivation of the measure is a good bit more elegant that this
one, and it is correspondingly more difficult. The main difference is
the choice of domain for the measure. He began with a function defined
over probability distributions, i.e., a function H having & typical
value

E 2(1), p(2),...,p(n)].

Be did not suppose, as we did, that H can te expressed as the expected
value of same function defined in terms of the probability of an
individual element being selected. Rather, he gave an axiom system,
which is somewhat similar to ours, for H from which he was able to
derive that E must be the expected value of the logarithm of the 8
priori probabilities.

#Problems
n
l1-Evaluate - & p(i)laggp(i) when
i=4
i. p{i) = 1/n, for 1=1,2,...,n.
114. p(1) =1, p(i) =0, for £ = 2,3,...,n.

(These two values can be shown to be the maximum and minimmm,
respectively, of the information measure when there are n



alternstives.)

2-In the game "20 questions" one supposedly can isolate ..y
"thing" in 20 binary (yes-no) questions or less._ If this is .
80, what is the mexdrmum possible mumber of "things?"

3-Suppose that A is a set of n elements with a given probability
distribution p(i), 1 € A. Suppose we form a single long message
by making successive independent selections from A. Let p denote
the probability of this message and let N, vhere N is very large,
log

denote its length. Show that ®

is approximately equal to

n
) 1)1o3.p(1).
Z p(1) 3,0(

#3.9 THE SHAPLEY VALUE OF A GAME

As background for this section ycu should reread section 1.9 on
Legislative Schemes, particularly the last two peges. You will recall
that we stated, but did not demonstrate, that for games (conflicts of
interest) with n players it is possible to calculate a plausible
measure of the "strength" of each coalition (= subset of the set of
players). Let U denote the set of players. Then, mathematically,
coalition "strength"” is a function v,with domein 2U and range the real

muubers, that satisfies two conditions, namely:

i. V(¢) = G,
ii. if A,BC U and A and B are disjoint, then
v(A U B) > v(A) + v(B).

Such a function is known as the characterdistic function of a game.

Most, but not all, of the present theory for games with n > 2
players is based entirely upon characteristic functions, and so it
is really quite immaterial exactly how they arise from the original
formulation of a game in extensive form (see Section 2.6). Indeed,
we shall make no verbal distinction between a game and its character-
istic function, and we shall speak of the game v when we actually
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pean the game with characteristic function v. In this section we
soall be concerned with & riori measures of individusl power for
games in characteristic function form.

The problem we shall describe was both raised and soclved by L.S.
Shapsly in "i valus for n-persam games®, Contributions to the

Theory of Games, II (H. W. Kuhn and A. W. Tucker, eds.), Annals of
Mathematics Study 28, Princeton University Press, 1953, 307-317. An
interesting and easily understood application of the Shapley value
to legislative schemes is found in Shapley, L. S. and Shubik, M. "A
Method for Evaluating the Distribution of Fower in a Committee System,"”
Amer. Pol. Sc. Rev., 48, 1954, 787-792.

Sup > » that you are to be a player in a game (described in
characteristic function form) which you have not participated in before.
You cannot know exactly what will happen in the play of the game, for
that depends upon decisions of other players as well as yourself.
Nonetheless, it would be surprising if you did not have some opinions,
based entirely upon the structure of the game as described by its
characteristic function, of its a priori vorth to you. For example, the
legislative scheme in which a coalition is winning only if you are in it
is surely worth more to you power-wise than the scheme where any
coalition having a majority of the players is winning. The problem is
to make such subjective evaluations both explicit and precise. From
vhat we have said, the evaluation must depend in some menner upon the
set of mumbers v(A), vhere A C U. Just what function of the character-
istic function would be ressonable to select is not, on the face of it,
obvious, and certainly any ad hoc definition would be questioned and
countered by other suggestions. So we are driven once again to employ
the axiomatic method. Following Shapley, we shall list three apparently
weak conditions from which it is possible to derive the unique function
vhich satisfies them. We will not actually carry out the proof, but we
will state the result.

V.-



We start out with the idea that player i's evaluation of a game
v is8 8 real number which depends upon the characteristic function v.
That is, for each player i we will have a function ¢i with dogain the
set of all possible characteristic functions and rarge the real
nuwbers. The quantity ¢i(v) will be known as the value of the game v

to player 1.

Since the numbering of the players is arbitrary, we may always renum-
bexr them in any way we like by a permutation of the original mumbering
system. This will cause the characteristic function to look different
even though it represents the same underlying game, but, éince these
are only notational differences, pleyers who correspond under the
relabeling should have the same value. So Shapley's first condition is

Axiom 1. Value shall be a property of the abstract game, i.e., if the
players are permuted, then the value to player i in the original game
shall be the same as the value to the permutation of player i in the

permited game.

If U is the set of all players, it is easy to show (using condition
11 of a characteristic function) that no coalition has power in excess
of v(U). Thus, in a sense, this is all the power available in the
situation for distribution among the players. Now, slthough each of the
players is evaluating the game for himself, his expectation must
reflect in large part what the other players can rightfully expect. We
would hold that if these a priori expectations totaled to more than
v(U), then surely at lesst one of the players must be over-evaluating
the worth of the game to himself. Similarly, if the sum of the
values is less than v(U), tken in a sense there is some under-estimation
of the a priori worths. The second argument is much less convincing
than the first, but let us accept it and so impose

Axiom 2. For every game v,



8,(v) + 0,(v) +oeus §_(v) = v(V).

Next, consider a player i who is participating in two different
ganes wit.h cﬁaract-.eristic functions v and w, say. EHe has an ]
evaluation for each of these games: ¢, (v) and Q)i(v). Now, if we
could think of these two games as being a single game, let us call it
u, then he would have an evaluation Qi(u), but since we assume that u
is but a renaming of the two given games, we should have

0, (m) = 4, (¥) + 4, (w).

The next thing to consider is whether we can treat the two games
as & single one. lLet us suppose that v is a game over th- set of
players R and that w is a game over the set S. While in our precedirg
discussion we assumed that R and S overlapped, at least to the extent
of player i, we shall now be more general and suppose that they may or
may not overlap. It is a trivial matter to extend both v and w to the
set of all players, RJ S. If A is a subset of R U S, we define

v(A) = v(R n A)and w(A) = w(S n A).

This is to say, in the game v, a coelition A has exactly the strength

given by those members of A who are actually in the game, i.e., those

who are in R; the members from S who are not in R contribute nothing.

Now, the two games are defined over the same set of players. Consider
what may be called the sum of the two games, denoted by u = v + w, and
defined by the condition that if A is a subset of RU S,

u{A) = v(a) + w(A).
It is easy to see that u is a characteristic function, and so it will

serve as the single gane representing the two given ones. Thus, the
third condition imposed by Shapley is
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Axicm 3. If v and w are two games and if v + w is defined as sbove, then

O (v +w) =0, (v) + ¢ (w).

The last axiom is not nearly so innocent as the other two. For,
though v + v 158 a game composed from v and w, we cannot in general expect
it to be played as if it were the two separate games. It will have its
own structure which will determine a set of equilibrium outcomes which
may be very different from those for v and for w. Therefore, one might
very well argue t) >t its a Priori value should not necesserily be the
sup of the value:s >f the two component games. This strikes us as a
flaw in the concept of value, but we have no alternative to suggest.

If these three axioms are accepted, then Shapely has shown that
one need not -- dare not -- demand more of_a value, for they are
sufficient to determine ¢i uniquely, and, indeed, one can obtain an
explicit formila for it, namely:

¢;(v) = = 7.(s) [v(s) - v(s - (1))],
S
sCu

where s is the number of elements in S and
7n(s) =(s -1)i(n - s)!/n! .

Let us examine this formule in detail. It is a sumation over all
subsets of the set of players, with a typical term consisting of a
coefficient -- which we shall discuss presently -- multiplying
[v(s) - v(s - {1})]. If i is not = member of S, then S - {1} = S, and
s0 the term becomes zero. Thus, the formula only depends upon those
coalitions involving i. It amounts, therefore, to a weighted sum of
the incremental additions made by i to all the coalitions of which he
is a member.
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To return to the coefficients -- the weights -- any one who has
dealt at all with simple probability models will recognize them as
very familiar. Suppose that we build up random coalitions by choosing
& player at random from all the players, a second at random from all
the remaining players, and 80 on. Keep track of player 1 and when he
is added to the random coalition, calculate his incremental contribu-
tion to it. It is easy t¢ show that the probasbility of his being
added to S - {1} is exactly 75(5). Thus, the value of the geme to
him is equal to his expected incremental contribution to a coalition
under the assunption that coalitions are formed at random.

#*Problens

1-Suppose n = 2 and that
v({1)) = - v({2}) and v((1,2}) = O.
Calculate ¢, (v) and ¢ (v).
2-Suppose n = 3 and that
v({1)) = v({2)) =v({3)) =0
v((3,2}) = v({1,3)) =v({2,3}) = v({1,2,3)) = 1.
Celeulate ¢, (v), 1 =1,2,3.

3.10 NON-UNIQUENESS

A consistent axiom system for a function does not always single out
a unique function, and scmetimes there does not seem to be any
acceptable way to add another axiom to arrive at a unique function.
Nen-uniqueness is hinted at if all plausible attempts to prove
unigueness fail, but this is not conclusive. Basically, there are
two ways to prove non-uniqueness: first, and much the most common,
is to exhibit two different functions satisfying the axioms, and
second, is to prove that uniqueness would lead to & contradiction.



The severel solutions to a non-unique axiom system mey be so
different from one another that little can be said about their
relation to each other. We know, for exsmple, the whole family of
logaritims (1i.e., logarithms to different bases) satisfy the
functional equation f(xy) = £{(x) + £(y), and that they are the only
solutions if £ is continmuous. But if we do not stipulate continuity,
many other discontinuous solutions exist and there is precious little
that one can say about their relation to one another and to the
logarithms. In such cases, one tries to avoid the resulting confusion
by adding other axioms, such as continuity, so that a fairly coherent
family results. By "fairly colherent"” we mean that a simple description
of the whoie family can be found. For instance, the family of logarithms
to different bases can be described by giving one member of the family --
the logarithm to a particular base -- and by noting that any other member
of the family is obtained by multiplying it dy a positive constant. The
last statement follows from the well known property

logbx = logba. logax.

Similarly, as we pointed out earlier, the several solutions to
the differential equation

differ from each other only by & constant.

One should not get the impression that it is always possible or
desirable to introduce another axiom to restrict the functions to an
easily described class. For example, in secticn 1.9 we stated the
two conditions characterizing the characteristic functions of n-person
gaxes. It turns out that there is no simple description of the set of
all characteristic functions, but we surely do not want to add more
condift’cus. The two conditions for charscteristic functions arise
frop corviderations in game theory and they are the only ones which
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can be derived, so we must live with them.

One also should not get the impression, when 2 family of solutions
can be easily described, that the only class of transformations are
constants, a8 in the two examples above. IuL the next section we will
present the axiams for linear utility functions, and it will be shown
that two solutions u and u' of the axiom system must be related by
vhat 18 known as & positive linear transformation, i.e., there are
constants K and L, where K > 0, such that u = Ku' + L. And in Chapter
4, vhere we discuss the axiomatization of mathematical systems, we will
be concerned with still another class of transformations.

Very little gensral advice can be given as how best to choose
axioms so that the whole class of solutions can be easily described or
how best to find a description of that class. Experiernce indicates
that it is often possible to formmilate problems whose solutions have a
campact description and that such problems are of interest, but little
of the experience in doing this has been neatly summarized, even as
rules of thumb.

#3.11 THE NON-UNIQUENESS OF LINEAR UTILITY FUNCTIONS

The preferences of individusls, organizations, and industries play
an important role in all behavior and, therefore, are bound to be an
integral part of any behavioral science. For example, in any conflict
of interest (the mathematical model being a game) each participant is
confronted by decisions to be mede, and, depending upon which are
actually made, certain consequences result. A unique pure consequence
will not necessarily arise from a given set of decisions, for there
may vell be probabilistic elements in the situation which together
with the decisions made by the participants determine the resulting
pure consequence. So, from the point of view of the participants, a
probability distribution over the pure consequences is the normal
result of a set of decisions, but that too can be considered to be a
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consequence. In any event, it is the consequences, not the decisions
themselves, which matter to the participants and about vhich they have
preferences. Of course, they will try to argue back from their
preferences among the consequeices to the ajpropriate decisions to
achieve preferred outcomes, and indirectly this induces a preference
structure over the decisions. This backward inference and the problem
of vhich decision is appropriate for getting vhat one prefers is vhat
game theory is about.

Preferences are relations: given two alternatives a and b, then
either a is preferred to b, b to a, & 1s indifferent to b, or they are
not comparable according to preference. But it is nome too easy to
vork directly with relations, and certainly ocur theoretical powers
would be vastly augmented were we able to cast them in a8 mumerical
framevork, thus putting at our disposal much of ordinary mathematics.
So, we are led to inquire whether there is any plausible way to assign
sumbers to the elements of a set A of alternatives in such a way that
mmerical magnitude reflects a person's preference relation > over A.
That is, if a € A and ve assign u(a) to a, then we would want these
mmbers to have the property that a > b if and only if u(a) > u(b).

In more formal terminology, we wouldnlike to find a real-valued function
u with domain A which preserves the ordering > on A. See section 3.3
for the definition of an order preserving mn::tion.

For one important set of alternatives this is trivial to do. If
a person is offered two sums of money, it seems safe to suppose that
he will prefer the larger (other things being equal), and so the
mmerical magnitude of money serves very well. But most alternatives
do not allow suck a trivial assigmment -~ consider preferences among
the several drinks offered at a party, or among automobiles, or
vomen, etc. Actually, in these latter examples the trouble is not
really in assigning numbers, for that can be easily done if the
jreference ordering is s weak ordering (see section 2.7), but rather
that it can be done in so many different ways. Observe that if A is a



finite veakly ordered set and u is a real-valued order preserving
function with domain A, then any strictly increasing monotomic
function (see section 3.3) iterated (see section 3.2) on u is also
8 real-valued order preserving function with dowsin A. Thus, there
is an infinity of real-valued order preserving functions. Further-
more, it is not difficult to show that the only property of mumbers
which is held fixed under such transformation is ordering; this
means that we cannot use any of the ordinary properties of mmbers
other than ordering. In effect, then, 1t is pointless to replace
the given weak ordering by a mmerical function.

Indeed, the history of the utility concept in ecorcmies suggests
that it was a good deal worse than pointless to introduce utilities
in this fashion. There was so much misuse and misunderstanding that
this concept of utility was pretty thoroughly discredited.

Another strand of the history of the utility idea traces back %o
early work, arising largely from the needs of gamblers, in probability
theory. In essence, the utility problem was this: suppose you have
assigned the utility u(a) to alternative a and u(b) to alternative v,
then vhat utility dces a gamble whose outcomes are either a or b have?
Let us denote by aod the following gamble: a chance event (such as
throwing & six with & die) has probability a of occurring and probabil-
ity 1 - a of not. If it occurs you receive alternative a, if not you
receive b. Thus, bos means that you receive b with probability o and
a8 with probability 1 -~ . With this interpretation, aob and b(l - a)e
mean exactly the same gamble. The question now is whether you can
express the utility of the gamble, u{acb), in terms of u(a), u(db), and
@ so that it correctly reflects preferences among gambles and pure
alternatives (which are, of course, e special case of gambles).

In the traditional gambling situations, the altermatives are money,
and, as we said, it is plausible to take the utility of & sum of money
to be its mmerical value. So, in this context, aab means you get $a

-130-,
;o

.
-
-



vith probability  and §b with probability 1 - . Either & or b
or both may be negative numbers, which means you lose that sum. Fow,
if the gamble ath is repeated a large mmber of times, one can expect
an average return per gamble of om + (1 - )b dollars. This appears
1o be & suitable index for the worth of the gamble. Or does it?

Consider the following problem, due to Bernoulli, which is known
as the St. Petersburg paradox. A fair coin is tossed as many times as
necessary for a head to appear. If the first head appears on the n‘l"h
toss, you receive 2° dollars. Since you inevitably receive some money,
the person running the game must charge a fee for each Play. Question:
how large does the fee have to be before you will be umwilling to pey
it to play the game? According to our preceding discussion, this should
depend upon your expected winnings in the game. So let us compute these.
The probability that the first toss is a bead is 1/2, in which case you
receive 2 dollars; the probability of a tail on the first toss and a
head on the second is (1/2)(1/2) = 1/4, in which case you receive
22 = 4 dollars; the probability of tails on the first two tosses and &
head on the third 1s (1/2)(1/2)(1/2) = 1/8, in which case you receive
23 .8 dollars; etc. Since each of these possible ocutcomes ig inde-
pendent of the others, we compute the e _pected winnings as

2(1/2) + b(1/%) + 8(1/8) +...+ 2°(1/2") +... =1+ 1+ 1 4.....,

which sums to no finite amount. In other words, you should be willing
to pay any finite amount, bowever large, to participste once in this
game. But this is silly.

There appear to be two possible flaws in the argument thgt leads
to the St. Petersburg paradox. First; we assumed that the wvorth, or
utility, of money to a person is measpred by its mummerical value.
There is considerable evidence, including subjective considerations ’
to suggest that this is fulse. Second, we emplioyed an argument based
°n many replications of the gamble to Justify evaluating it in terms
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of its expected monetary return, and then we used this same evaluation
when the gamble occurs only once. In other words, while the long run
argument probably mekes sense for a gambling house, it may not for the
individual gambler playing only a few times. Another indication that
monetary expected values do not represent the subjective worths of
ganbles is based on the following observation. Consider gaubles of
the following form: you win a fixed amount x if a fair coin comes up
heads and lose the same amount x if it comes up tails. All such
gambles have the same expected return, namely: O. But wouid you be
indifferent between one where x = $0.05 and one where x = §1,000?
Cbviously not.

S0, ve may want to drop either the assumption that the utility
of money is equal to its mumerical value or the assumption that the
utility of a gamble is given by the expected value of the utilities
of its components or both. Of the two, we are much more willing to
drop the first than the second, especially since it only applies to
money anyhow. For non-monetary outcomes we have the task of assigning
numbers and so we might just as well extend this problem to include
monetary outcomes. But once we admit that the utility of money may de
different from its mumerical values, then the expected value of utility
(not money!) assumption may hold. At least we do nmot have any evidence
to hand whi~h shows that it doesn’'t. The moderm theory of utility,
vhich originated with von Neumann and Morgenstern in the second edition
of their famous book The Theory of Games and Economic Behavior, Prince-
ton: Princeton University Press (1947), describes the conditions on
the preference ordering such that one can work with expected utilities.

For a general survey of more recent work in this and related topics,
see Edvards, W., "The Theory of Decision Making," Psychol. Bull., 51,
1954, 380-~417 ad Luce, R,D, and Raiffa, H,, Games and Decigions
Wiley, 1957, Chapter 2,

The reason for all this fuss about expected utilities is largely
msthematical, for without this property such theories as those of
games and statistical decisions would be virtually impossible.




Intuitively you can easily see the power of the assumption. One need
not know the utility function for each of the infinity of gambles
possible with a finite set of alternatives, rather it is sufficient to
mov them for the finite set and to compute them, using expected
utilities, for any gamble. It permite an extremely economical summary
of a person's preferences over all gambles.

So we have the following problem. Let a finite set A be given and
let G be the set of all possible gambles formed from elements of A.
Let G be weakly ordered by > . To find a real-velued function u with
domain G satisfying
Axiom 1. (order preserving) if a,b € G, a > b if and only if

u(a) > u(d).
Axiom 2. if a,b € G and  is any real number such that O < @ < 1, then
u(agd) = aufa) + (1 - a)u(db).

Any function satisfying these conditions is known as & linear utility

function of the weakly ordered set G. (The word "linear"” refers, in
this context, to the second axiom.)

The first observation we make is that this axiomatization is not
consistent unless the weak ordering satisfies certain restrictive
properties. For example, if a > b > ¢ it is necessary that there be
s number a, 0 < @ <1, such tha;b - aac. To show this, suppose u
satisfies the axioms. Then by axiom 1, u(a) > u(d) > u(e). An
elementary property of mumbers assures us that there exists s number
a, O0<a =1, such that u(b) = cu(a) + (1 - adu(d). . us, according
to axiow 2, u(b) = u(ace), so by axiam 1, b . aaec,

This mesns, in effect, that preferences must possess a certain
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continuity if they are to be represented by linear utility functions.
If we think of 0 as a variable quantity, b is preferred to a vhen
a=0and as it 1s increased until a point is reached where they are
ind{fferent. After that, any increasa in G causes the gamﬁle to be.—
Freferred to b. Except for certain discrimination difficulties which
people always seem to exhibit, this seems like a plausible way for
preferences to behave. But there may be exceptions, as is suggested
by letting

& = five cents
b = one cent
c instant death.

One can derive other necessary requirements on the weak ordering
if the axioms are to be consistent, i.e., if a linear utility function
is to exist. Furthermore, and this is the important part of utility
theory, von Neumann and Norgenstern tock ome such set of conditions --
each of which has a certain intuitive plausibility for preferences --
and showed tanat whenever these are met there must be a linear utility
function. We shall not develop this theory in this section; our aiuns
are more modest.

We shall suppose that we have a case where a linear utility function
exists and then inquire into i1ts uniqueness properties. First, it i{s
easy to see that it is not unique, for if u satisfies the axioms and
K is a constant > 0, then so does Xu. Second, 5. ce there are several
linear utility functions, we would like to know how they are related
to one another. Our claim is this:

Theorem. 1If u and u' are twu linear utility functions, then there
exist constants K and L, X > O, such that

us=Ku' + L;
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and any such transformation, which is known as a positive linear
transformation, of a linear utility function is also & linear utility
function.

Proof. The second half of the assertion is easily verified and it is
left as a problem.

The first pert is a little more subtle. Choose any a,b € G such
that a > b. Define K and L to be solutions to the following
similtanecus algebraic equations:

u(a) = Xu'(a) + L

u{d) = Kku'(d) + L

_ usa.) -ugbg
K=iay—u'

and

o _wia)uld) - uladu'(b)

u'{(a) - u'(b)

Since & > b, axiom 1 implies that u(a) > u(b) and u'(a) > u'(db),
80 both constants are well defined and X > 0.

Now, consider the function
u" = Ku' + L.
We claim that u" = u, i.e., for every ¢ € G, u"(c) = u{c). Since

> is & weak ordering, exactly one of the following three cases holds

for each ¢ € G:

I .
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i. e >as,
ii. a>e¢ >0,
iii. b >ec.

Each one requires roughly the swase treatment; we will carry out case
ii here. and i is assigned as a problem and iii is almost identical to
i. Im . .1, we know fram the necessary condition we derived for >

that there exiets a mummber @, O < @ < 1, such that ¢ ~ adb. Accord-
ing to axiom 1,

u"(e) = u"(ead) = Ku'(aad) + L.

Since u' satisfies the axioms, we use the second one and carry out

some simple algebra:

u”(c) = Ku'(acb) + L
=Klo'(a) + 1 -a)u'(d)] + L
afxu'(a) + L] + (1 - o)[ku'(b) + L].

Il

Recalling the equations which were used to define K and L,

u"(c) =alku'(a) + L] + (1 - a)[ku'(db) + L]
=auf{a) + {1 - adu(b).

Finally, we use the fact that u satisfies axiom 2 to obtain

u"(c) = au(a) + (1 - a)u(d)
= u{ach)

=u(e).

50 we have completed the proof that u and u' mst be related by a
positive linear transformation. Thus, in any perticular problem it

is sufficient to describe one of the linear utility functions in
detail, i.e., to give its values on the underlying set &, amd to remsrk
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that all others are related to it by means of s positive linear
transformation.

Another way to say this is that linear utility functions are
uniquely determined up to their unit and zero, i.e., it is completely
arbitrary which element of G we take to have zero utility and which
pair of elements we take to be one unit apart in utility. This means
that it is & measurement like ordinary (Fahrenheit or Centigrade)
temperature scales, not like length or mass where the zero is uniquely
determined.

*Problems

1-Suppose u is a real-valued order preserving function with a
quasi-ordered domain. Show that the quasi-order must, in fact,
be a weak order.

2-If K > O, show that Ku + L must be a linear utility function if
u is.

3-Carry out the proof that u"(c) = u{c) for the case ¢ > a.

L-From the axioms for & linear utility function, show that >
must have the property that

aob>a&)ifandonlyifo:3:3.

Interpret in words what this means. Is it & reasonable condition?

[
- .,
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CHAPTER IV

AXTOMATIZATION OF MATHEMATICAL SYSTEMS

4.1 INTRODUCTION

From the mathematician's point of view, our failure to emphasize
any axiomatizations other than of functions has been, to say the
least, peculiar. He would feel, and rightly for pure mathematics,
that our present topic is much the most important aspect, that our
long chapter 3 should have been little more than a footnote to this
chapter, and, when he had completed this chapter, he would feel we
had done a very incomplete job. Without disputing sueh objections
for pure mathematics, we feel -- and at present this is little more
than a conjecture -- that our emphasis is reasonable for those who
will be concerned with applications of mathematics to bebhavioral
problems. Nonetheless, because the history is short and also because
traditior is always an uncertain guide to the future, we would be
unvise not to suggest the more prevelant uses of the axiomatic method
in mathematics and to indicate some of the systems which have proved
important.

By & mathemetical system we have in mind something fairly complex,
usually with several interrelated operations, which is studied as a
whele eatity. Examples are: gecmetry, the real or complex number
system, the algebra of matrices, the theory of sets, etec. Other
examples, derivative from these, will appear later. In the course of
studying such systems, studies that initially are very fumbling and
tentative, certain concepts and operations gradually loom gs more
important than others. They seem to be more fundamentel to the system
in the sence that they are widely used and are often crucial in the
proofs of important theorems. Sometimes these are the ideas which
have arisen early in the study and which seem intuitively natural; in
other cases they seem to be much more sophisticated concepts which have
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required a long time for their develomment. For example, in the
number system the operations of multiplication and addition, which
arose very early, are still considered basic to the system and are
the source of ideas for a great deal of modern algebra. But equally
vell, the idea of a topology -- the "near t0" structure mentioned
earlier -- appears today to be a crucial feature of the number systen,
and it has led to the extremely fruitful study of topological spaces
which pervade much of modern mathematics. This idea was much slower
developing, and it was really only adequately formulated within the
last fifty years.

As certain concepts und operations begin to stand out as crucial
to the system being studied, one is tempted to isolate them totally
from the original system and to study them in their own right.

This is the central idea lying behind the axiomatization of mathematical
systems. Example: {if we think of real nmumbers, they have a lot of
properties: a notion of multiplication, of addition, of less than,

of nearness, etc. We could single out just one of these for isolated
study, ignoring its relations to the others. For instance, suppose

we select multiplication. The minute we do this , we begifi to realize
that we bave concepts of multiplication in other mathematical systems,
such as matrix algebrs, and so one is lead to see what common Prop-
erties multiplication may have in these several systems. Such a study
finally leads to the very rich theory of groups.

By isolating a portion of a system we mean this: One or more
operations or concepts of a known system are selected and same of
their properties, i.e., theorems in the original system, are taken
as axioms to characterize these "undefined" operations or concepts.
The choice of which properties to use is, just as with functions, s
fairly subtle business, requiring Judgment and experience.

Once an axiomatization is given, then the mathemstical problem is
to introduce definitions -- often motivated by corresponding concepts
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in the original mathematical system which suggested the axiomatiz-
ation -- and to p.ove theorems about these definitions, i.e. , true
assertions which follow from the axioms and the rules of logical
inference. Again, many of the central theorems, st least at the
start, will be suggested by properties found in the original math-
emtical system; however, as the axiom system is intensively studied,
there sill usually result ideas and theorems either not noticed or
not particularly significa.nt in the original system.

You may ask: what is the point of all this? Our answer must be
that such methods have, historically, enriched mathematics and science.
For one thing, isolating a pert nf a complex system such as the real
mmbers permits us to see which classes of theorems rest upon which
basic facts. ©OSecond, some of the systems which have been isolated
have been found to recur over and over in widely divergent parts of
mathematics, and so their independent study has meant that an
elaborate set of theorems are ready for application in any context
where operations and concepts satisfying the axioms appear. The
abstract notion of multiplication as formulated in group theory is
a case in point. Third, isolating significant subsystems of one or
moe basic mathematical systems permits us to see how they might be
recombined in a variety of ways. Some of these new constructs have in
the past proved extremely fruitful in extending our understanding of
one part or another of mathematics and in creating new mathematics
which, sometimes, is suited to particular applications. The recent
history of mathematics includes the intemsive study of systems , the
abstracting of portions as axiomatic systems, the application of these
resulis in other parts of mathematics and the recombining of different
subsystems 10 form new mathematical systems, the intemsive study of
tilese, further abstraction, etc. This conitinual and complicated inter-
play and refertilization arising from abstracting and recombining has
proved very stimulating to mathematies.

&lthough we have emphasized self stimulation in mathematics, we do nct
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wvant to play down the possibly more important stimulation furnished

by the application of mathematics to science. It is here, primarily,
that the original mathemntical systems are developed and the central
theorems, which often are suggested by the properties of the physical
systems abstracted, are proved. It is anticipated that the attempted
applications of mathematics to behavioral problems will, in the future,
prove to be the source of many new and rich ideas for methemmtics.

Some, though not all, axicmatizations of mathemstical systems are
a good deal like the meterial discussed in chapter 3 in that they
involve functions. Even so, there are two ways in which they
generally differ, although neither of these is strictly necessary.
First, in very many cases there is more than one function, and the
several functions are intertwined in some manner. Example: if we
wvere to abstract from the theory of sets, we would have both a function
representing union and one representing intersection and these would
have tn be interrelated in just the way union and intersection are in
set theory. Second, when an axiomatization includes functions, it is
usual for the range and the domain of the function to be extremely
closely related. Example: suppose multiplication of numbers is to
be abstracted. In that case one assigns to every peir of numbers, a
and b, & third aumber ab called the product of a and b. This suggests
that in the abritract formulation there must be a function with some set
R as its range and R >< R as its domain. Or, if we try tc abstract set
thecry, one operation which must be taken into account is complementa-
tion, which assigns to every subset of U another subset of U, namely,
its complement. Thus, in the abstraction we would have & function with
both domain and range some set A, where A plays the role of 2°. In the
usual terminology, many of the operstions which concern us are "closed."
We take one or more elements from a given set and the operstion leads
us to another element in the same set. This sort of closure is re-
flected by having the domain of the function which represents the
operation closely related to its range.
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But ome should not get the idea that all of the systems studied
axiomatically are based on functions. Actually, we have already
seen several cases which were not, although at the time we did not
mention that we were using the axiomatic method. Our definitions of
different classes of relations -- reflexive, symmetric, etc. -- were
really simple axiom systems. Similarly, our definition of an algebre
of sets could be treated as an axiom system.

4.2 SOME TERMINOLOGY

As in the axiomatization of functions, one has problems of
existence, uniqueness, etc. Actuslly, slightly different questions
must be phrased and some of the ewphasis is, for good reason, different.

Consistency. The first question here, as with functions, is whether
the axioms as a group are consistent, i.e. s whether something exists
which satisfies them. It is usual to call any methematical structure
which satisfies all the axioms of a given system an interpretation of
the system. For the most part, this problem is either extremely simple
or extremely difficult, depending upon how you look at it. Since the
axiaoms in general arise from some special mathematicsl structure, such
as the real mmbers or set theory, which has already been investigated
and is generally accepted to exist, they are trivially consistent. This
is the simple way of looking at it. But one can question how we really
know that the number system exists. Are ve not liviag in & fool's
peradise by supposing that we cannot prove contradictory results within
that system? While this i{s a fruitful skepticism frcm a pure mth-
ematics point of view, in applied work one usually takes a far more
pregmatic approach and assumes that the well known systems do in fact
exist and that they will serve as demonstrations of the consistency of
an axiom system.




Completeness. The direct analogy of uniqueness for axiom systems
is completeness, meaning, roughly, that there is at most one possible
interpretation of the system. By and large, this concept is not of
the same practical importance for systems as it was for functions,
because most of the axiomatizations are not ccmplete. Indeed, much
fundamental research on the completeness of systems, stemming in
large part from work of Godel, has shown that it is very rare to find
a set of axioms which are both consistent and complete. Such work
has been extremely important in understanding the founfations of
mathematics and in some respects it has been profoundly disturbing,
but for applications it need bother us but little. Of much greater

relevance to us is the next notion.

Categoricalness. Au axioms system will be called categorical if,
roughly, any two interpretations of the system, while not identical,
are formally the same in the sense that one can be "superimposed” on
the other in such a way that they look alike. That is to say,
elenents of one can be identified with elements of the other and
operations in one with operations in the other, so that corresponding

operations take corresponding elements into corresponding elements.
We will go into what we mean by tais much more fully in the next
section, for it is an important notion.

In practice, this amounts to having uniqueness, for it means that
if we have investigated one interpretation of the system fully, then
we know how all others must look, for we can set up an identifiecation
of elements and operations so that they are formally the same.

When an axiom system is not categorical, then problems arise which
are similar to non-unique axiomatizations of functions. Can we
establish hov one interpretation meps into another? If not, can we
classify the several interpretations into some reasonable taxonomy?

Independence. One axiom of a system is said to be independent of
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the others in the system if 1t is not & logical consequence of them.
One shows this is so by finding an interpretstion vhich meets all the
remaining axioms but which fails to meet the one under consideration.
It is clear that if such an interpretation can exist, then it is
impossible to derive the one axiom from the others. If this can be
done for each of the axioms in a system, then the system is said to be
independent.

This notion is not really terribly important for most purposes. To
be sure, it is nice to get rid of obvious redundancies in an axiom
system, but often the less obvious ones are lef: in for either
poychological or pedagogical reasons. A redundant axiom systen is
often much more intuitive and easier to recall than one that is
independent. Of course, it can be an intriguing mathematical gane
to be certain that a particular set of axioms is independent and,
if not, to devise one that: is, but only rarely does this result in
a valuable contribution to the understanding of the system. Some

Judgment is generally necessary.

Weakness and Strength. Allied to the concept of independence is
the scientifically more important question of which of two axiom
systems for the same concepts is the weaker. Such problems arise from
the fact that there is never a unique way to sxiomatize any concept.
If we are abstracting from a given mathematical system, we choose
certain properties of the original system as axioms and from these
derive other properties as theorems. It is quite arbitrary which of
the properties we choose to take as axioms and which we try to derive,
though in general there is not really complete freedom in this choice.
The axioms should be, in some sense, simple, immediate of comprehension,
and appealing to the intuition. But even within these vague criteria,
there is a good deal of free 'm in their choice.

Now suppose A and B are two axiom systems for the same undefined
concepts. We say that A is strunger than B (equa.lly, B is weaker than
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A) if it is possible to derive all of the axioms of B from those of A,
but the comnverse is not possible. If we can derive all we want or need
from a weaker axiom system we shall always prefer it to the stronger
one. The reason for this is clear: we invariably want to assume as
little as possible to get the results ve need, and so of two axiom
systems which give us these rvsults we prefer the veaker onme. This
does not deny that .rom the stronger system we can derive theorems
vhich we cannot prove for the weaker one, but rather that, for vhat-
ever reason, we are not interested in these extma results.

It should be mentioned that it is not always easy to apply the
above principles. A particular theprem wvhich we need may appear to
require all the axioms of a perticular system A, and, therefore,
appear not to be provable within a weaker axiom system B; yet it is
well known that appearances can be deceiving. An ingenious mathems-
tician may be able to derive the theorem from B, even though the
original proof seemed to rest on everything assumed in A. Often this
can be a very valuable contribution as, for exsmple, when the axioms
of A seem too strong to be tenable in scme empirical context, but
those of B are acceptable.

4.3 CATEGORICALNESS AND ISOMORPHISM

As we pointed out above, it is fairly rare for an axiom system to
be complete, i.e., to have a unique interpretation, but it is much
more common for ome to be categorical, i.e., for the interpretations
to be formally the same. 1In this section we wish to make clear,
without being completely precise about it, what we mean by two systems
being "formally the same."” The word which is used for this notion is
isomorphism. What we will do is define isomorphism of two very simple
classes of systems and then suggest how it must be defined more

generally.

The simplest ¢ 2 is simply that of sets having no structure of any
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sort upon them. In that case & special word instead of isomorphism

is used. Two sets A and B are said to be in one-to-one correspondence
(usually written 1l:1 correspondence) if there exists a function £ from
A onto B which has an inverse. Let us see what this means. First,
since "function"” means "single-valued function" there is just one
element of B associated to any one element of A, and, since the
function is onto and has an inverse, there is associated to each
element of B just one of A. In other words, there is a one-to-one
paliring of the elements of A and B.

It is easy to see that if A and B are finite sets, then they can
be placed in 1:1 correspondence if and only if they have the same
mmber of elements. But be careful about carrying over notions of the
meaning of 1:1 correspondence frcm finite sets to infinite sets. If
A is finite, there clearly cannot be a proper subset B which is in 1:1
correspondence with A. But if A is infinite, this is possible (indeed,
it is one way to define what we mean by infinite). Consider, for
example, A = set of integers and B = set of even integers. Clearly, B
is a proper subset of A since all the odd integers are not included in
B. But we claim that there is a 1:1 correspondence between A and B,
namely f: A -» B, where

ifa €A, £f(a) = 2a.

Since a is an integer, 2a is an even integer. The mapping is onto
since if 2a is an even integer, a is an integer. And f has an inverse,
namely, £ X(b) = b/2, b ¢ B.

Any infinite set which can be put into 1l:1 correspondence with the
integers is said to be a countable (or denumersble) set; otherwise it
is said to be non-countable. By what we have just seen, the even
integers are countable. Equally well, so are the odd ones. Less
obvious is the fact that the set of all fractions (mumbers of the form
a/b, where & and b are integers) is also countable. If that is so, one
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might be tempted to suppose that all infinite sets are countable, but
wve can show that this is not the case. Consider the set of all real
numbers lying between O and 1. We show that this set is not countable.
To do this, we suppose that it is in fact countable, i.e., there is a
first (the one mapped into the integer 1) which we denote by a8, 8
second (the one mapped into the integer 2) which we denote by e,, ete.
It is, of course, well known that any real number can de expressed as
an infinite decimile expansion of integers from O through 9. let us
denote the ith

the array

integer in the expansion of L by LI i.e., wve have

8 = 0.&11 85 al3"""

32 = 0.&21 322 323. .....
=0. ® e e e
83 = U-831 835 833
an = O.anl ane an3 ..... ann"'

Now, let us consider the real number

b =0.bbbo....,

vhere

bi YR 1, if a,, £9
0 , if a,, = 9

We claim that cur counting has igoored this number. If not, then
it is some mmber in our list, say the nth. Now consider the decimile
expansions of L and b. By choice the nth integer in the former is

& . 8nd in the latter b £ 8 - Thus, they are not the same mmber,
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so b vas cmitted from the counting. But this is contrary to choice,
80 such a counting cannot be possible.

So, for sets without any assumed structure, 1l:1 correspondence is
vhat ve mean by isomorphism. Whenever there is some structure under
consideration, the idea becomes a little more complex. Possibly the
simplest case is sets having a single relation defined on them.

Suppose A and B are sets with relations R and S, respectively.

We say the system (A,R) i1s iscmorphic to the system (B,S) provided

we can find a 1:1 correspondence f between A and B such that both £

and £ 1 are order preserving, i.e.,

if a,b € A, then aRb implies f£(a)Sf(b),

if x,y € B, then xSy implies f-l(x)Rf-l(y).

Grephically, this is particularly easy to see. Consgider the two
relations

€ < ¢

o
X

3 d c
We clain that these are isomorphic. This is easily checked once you
make the 1:1 correspondence of the points:

1-b
2-d
3-¢

h-a
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Another case where isomorphism is simple to define is among sets
having a multiplication structure. As we pointed out before, multi-
plication in a set A amwounts to a function from A >< A into A. It is
usual, however, not to use functional notation, but rather some symbol
such as aob or a*b to stand for the element which is the "product of
a and b." Suppose (4,0) and (B,*) are two multiplicative systems.

We say that they are isomorphic provided that we can find a 1:1
corr.spondence f between A and B such that f and f°l both preserve
the multiplication, i.e.,

if a,b € A, £(aob) = £(a)*£(b),
nnd
if x,y € B, £ (xty) = £ (x)of T (y).

The generalization to more complicated mathematical structures is
probably clear. We begin with two sets, each having a series of
operations, functions, relations, and the like. A 1l:1 correspondence
is established between the operations, etc., and another between the
elements of A and B. If the element-wise correspondence has the
property that both it and its inverse preserve the effects of corres-
ponding operations, then we say it is an isomorphic mapping of the one
system onto the other. If such a mapping exists, then the two systems
are said to be isomorphic. We will not try to make isomorphism any
more precise than that.

As we said earlier, most axiom systems are not complete, but
many are categorical in the sense that any two interpretations are
isomorphic.

Problems

1-Establish whether or wot the following peirs of relations are
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isomorphic.

II.(__.B -~

de — 0

ii. 1. —_—2 R oD
Lo ' 3 de — — _susc

2-1et M dencte a class of sets, each set having a relation defined

over i{, Consider isomorphism of pairs of sets and their relations

as a relation over M. Show that it is an equivalence relation.

3-Show that the positive real numbers under multiplication are
isomorthic to the set of all real numbers under addition.

L .4 BOOLEAN ALGEBRAS

Our first, and primary, example of an axiomstic system arises from
set theory. The interpretations of the system that we shall present
are known as Boolean algebras, the name honoring George Boole who
laid the foundations of set theory. In one way it is & poor example
of axiomatization, for it is somewhat unrepresentative. Rether than
select some portion of set theory to serve as a guide for the axiom
system, we shall use the entire structure: axioms will be given for
"undefined” operations analogous to all of those of set theory -- to
union, intersection, complementation, and inclusion. It is much
more usual to attempt to abstract some limited, but crucial, portion
of ihe original system; we shall see two examples of this using the
real mmber system as the source of ideas. Actually, there are such
abstractions from sei theory. For example, if one abstracts the
inclusion relation and the fact that the union of A and B is the
smellest set which includes both A and B and the intersection of A
and B is the largest set included both in A and B, then one has the
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axioms for what are known as lattices. But because Boolean algebrss
are quite importanit and we already have some background in set theory,
we shall use them -- even though they are not fully representative --
as our example of an axiomatization.

Let us suppose that we impose on a set B four undefined operations
which correspond to the four major operations in set theory, and we
specify that they must satisfy properties which correspond to some of
the theorems which can be derived in set theory. But there are an
infinity of true theorems in set theory, so which shall we select?

This problem always confronts cne in an axiomatization, and a wise
choice among these possible axioms is always & major intellectual

feat. Often when an abstraction is first being formulated and
investigated, several different axiamatizations will be put forward.
Scmetimes they all persist in the literature, but more often experi-
ence with the several formulations leads to a decision as to which is
preferable. 1In the present context, we don't really have to enter into
the pros and cons of different axioms, for there is widespread -- indeed,
total -- agreement. This isn't to say that there are not a number of
different systems for Boolean algebras availeble and used, but only that
they are all equivalent to each other. The set of theorems which we
shall use as axiams are those listed in section 1.6. It is recommended
that you reread that section now.

S0, to be more precise, we assume as given: a set B which has at
least two elements ¢ and u -- these will play specisl roles correspond-
ing to the null and universal sets -- , a relation R on B, and three
functions

Fl:B><B—«pB

FE:BXB-;B

F3: B B

Notational convention: Since the relstion and the three functions are
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to play roles paralleling the usual set operations » it is convenient
to use a parallel notation. In actusl practice, exactly the same
symbols are employed; however, here we shall add a star to each of

the usual symbols in order to emphasize the distinction between these
operations which are to be axiomatized and the familiar set theoretical
operations. Thus, if a,b € B, we write

& C % for amb,

a U for I-‘l(a,b),
a N * for F,(a,b),
i for F;(a)

It is extremely important to understand that these starred
operations have nothing to do with inclusion, union, intersection,
and complementation among the subsets of B. They stand for relations
and functions defined in terms of the elements of B, not in terms of
its subsets. In the axiomatization, the elements of B will play the
role of subsets in set theory. In other words » 1f U is & universal

set, B correspouds to au, not to U.

A system (B, U %, n %, C %, —#), where the ranges and domains of
the operations are those given above, is called a Boolean algebra
provided that the following axiocms are satisfied for every a,b,c € B:

Axiom 1. a ( *a.
Axiom 2. 1f a ( %b and b C #c, then a ( *c.
Axiom 3. ¢ C *a. Axiom 3'. a C *u.
Axiom 4. a U ¥a =a, Axiom 4'. an*a =a.
Axiom 5. a U *b =b U #*=a. Axiom 5'. a N % =Db N *.
Axiom 6. a U #(b U #*c) = Axiom 6'. a n *(bn *) =

(a U %) U *¢. (a N *) n *c,
Axiom 7. a U *(b N *¢) = Axiom 7'. a n *#{(b y *e) =

(a U ) n *(a U *). (a n *b) U *(a n *c).
Axiom 8. ¢ N *a = ¢. Axiom 8'. u U %8 = u.
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Axiom 9. ¢ U %8 = a. Axiom 9'. un * = 8.

Axiom 10. & U *a = u. Axiom 10'. & N ¥ = §.

Axion 11. & U ¥ =a N ¥ . Axiom 11'. AN ¥ =a U * b °
Axiom 11. , el

Axiom 12. a =8,

Axiom 13. Each of the following implies

the other two:
aC%, an¥* =a, au ¥ =b.

The first problem we must consider is whether this axiom system is
consistent. It certainly is for some sets B, for all we need do is
choose a set Uand let B = 2Uland the resulting algebra of subsets is
certainly an interpretation of the system. A theorem which we shall
state below shows that the axiom system is only consistent for certain

sets B.

Second, why did we choose this particular set of theorems of set
theory to use as axioms? The answer is reasonably clear if you recall
the statement we made when discussing the corresponding theorems in
set theory to the effect that it is possible from these theorems alone
to prove any other theorem which can be phrased in set theory concepts.
It is never necessary to resort to arguments involving elements of
subsets. Thus, in any Boolean algebra it is always possible to derive
from the axioms any theorem whose corresponding statement is true for
sets. But if that is so, it must mean that any interpretation of a
Boolean algebra cannot really be very different from the algebra
generated by the subsets of a given set. Among other things, we
might conjecture that all interpretations in which the underlying
sets B are in l:1 correspondence are isomorphic. This, and a bit more,
is true, but our way of arriving at i{ has hardly been honest. It has
been built upon our statement in Chapter 1 that any other true theorem
for sets could be derived directly from those which we listed, but we
did not prove this statement.

It actually follows from the central representation theorem for

-151;-



Boolean algebras to which we have been leading up. The theorem is
this: Any interpretation of a Boolean algebra is isomorphic to an
algebra of sets (see section 1.8), whick is, of course, also an
interpretation. This says not only that any two interpretations which
are in 1:1 correspondence are isamorphic, but also that there are no
interpretations which are not isomorphic to an algebra of sets. Thus »
whenever we have to think about a Boolean algebra, we will not be
misled by thinking of an algebra of subsets of a given set with the
operations of union, intersection, inclusion, and complementation.

But if this is 80, has there really been any point to the
axiomatization? Won't all interpretations be so immediately parallel
to set theory itself that the axiomatization is superflucus? Two
rather distinct examples suggest that this is not so. The first we
shall sketch briefly now, and you will study it and related topics
much more fully later; the second will be presented in the next
section.

Consider elementary logic. It begins with a set of propositions,
l1.e., statements which can be either true or false. Examples: "a red
automobile must be a fire engine,” "Mt. Everest exceeds 10,000 feet in
height," "a tree is a tree or a house,” etc. Of these, the first is
empirically false, the second empirically true, and the third
tautologically true. Four basic logicasl connectives can be identified
which allow us to form new propositions from old: If p and q denote
propositions, then we can form the propositions

Porq, pand q, not p, and p implies q.

It is generally assumed that these connectives satisfy certain
properties. These lie so deep in our early training, and are so
closely integrated with experience, that we sometimes forget that
they are unproved assumptions -~ or axioms of the calculus of
propositions. For example: not{not p) =p, por q = q or p, etc.
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It turns out that if we make the following identifications

) L1

for u*
"and" for N*

"not" for -#
"implies" for (¥,

or

then each of the axioms for a Boolean algebra becomes one of the
usual assumptions of logic. In other words, the mathemat{cal
structure lyirg behind our ordinary propositional logic is the same
as that for sets; it is a Boolean algebra. This is not unreasonable
vhen you remember that A U B is the set of elements either in A or
in B, A N B the set of elements in A and in B, etc.

One final point should be made. The axioms we have presented are
far from being independent; this is suggested by axiom 13 which says
that we could have defined some of the operations in terms of others.
In the literature one can find a number of different independent sets
of axicms for Boolean algebra, and there is one which is based upon a
single undefined operation (known as the Sheffer stroke). We have
chogsen a non-independent set for ocur discussion because in this form
they are particularly simple and intuitive; the axioms of the
independent sets tend to be somewvhat more obscure. For a much more
detailed discussion of these points see Birkhoff's Lattice Theory and
for a less comprehensive, but simpler, discussion see Birkhoff and
Maclane's A Survey of Modern Algebra.

Problems
1-Show that every Boolean algebra has a Boolean subalgebra of
Just two elements.

2-Define formally what it means for two interpretations of a
Boolean algebra to be isamorphic.

¥3-let U be & set. lorm the o by n matrices having as entries,

1.7 -
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not mmbers as in ordinary matrix theory, but subsets of U.

ﬂmsif&u denotes the entry in the ith row and jth columm

of the metrix A, A“CU. Can you see plausible ways to
define the Boolean opersations A Iy #B, A n *B, A #B, and

f, vhere A and B are such matrices, so that the set of all
such n by n Boolean matrices form a Boolean algebra? By
analogy to ordinary matrix multiplication, we can define
Boolean matrix multiplication as follows: The ij entry of
the product of A and B, written AB, is the subset

(A11 n BlJ) U (Aie n Baj) UoooaU (Ain n Bnd)
n

= U (Aik n Biq)'

k=1

Suppose we think of the rows and columns of the matrix as
representing people and of U as a set of information. What

is the analogue to the commnication interpretation of ordinary
matrix multiplication given in section 2.5.

L.5 SWITCHING CIRCUITS
A switch, as we shall use the term, is any device which is always

in one of two possible states, which can be called "on" and "off."” An
electric knife switch of the type shown

off
in Fig. 21 is a good example. Such ot
n -
switches are 'wired” into circuits to l——a——f-i_‘, o
form more complicated switches of the % on

same general sort, i.e., under some Fig. 21

conditions they are on, under the remaining they are off. If a
switch is in the "on" position, current from the input will flow
through & wire attached to the "on" terminal, but not through s wire
attached to the "off" terminal. Each distinct switch in a circuit
will be given a name such as p or ¢. In some circuits there will be
twe physically distinct switches which are "ganged" together so that
they are on together and off together. In such cases, the same symbol
will be used for these switches, for they are functionally the same.

We propose to show that the algebrs of such circuits is a very



simple Boolean algebra and that this is useful to know. Suppose it
is a Boolean algebra, then since a switch has only two states it is
presumable the two element algebra {¢, u)} which is relevant. Let us
identify the element ¢ with the "off” terminal of a switch and u with
the "on" terminal. Now if p is a switch, ve say that p = ¢ 1f the
knife is in the "off" position and p = u if the knife is in the "on"
position. Now, consider the switch p:

if p=¢ , then
if p =u , then

'dl |
]
r-‘MH
!

u
¢-
So p is the switch vhich is on when p is off and off when p is on.

Fhysically, p can be obtained from the switch p simply by interchanging
the connections to the output terminals,

PLJ__
as in Fig. 22. —_—
u

Now, if p and q are two switches, ¢
then p U q 18 a switch with the following —— B
properties: P R A
Fig. 22
PUG=¢if p=dand q=4d, Fm e e e e
= u otherwise. ! ——
u rvise ‘ ¢ é/‘:‘i’
U g g '
This amounts to wiring p and g in ¥ J a@ P —«——N u '
parallel, as shown in Fig. 23. e it I SR
Fig. 23
Similarly, pnNqisa switchwith
]
the properties K 3 ¢
l j
!
PNg=uifp=uandgqg=u an‘ L E— U
i
= ¢ otherwise. I e
Fig. 24

This corresponds to switches wired in series, as in Fig. 24. Note
the strong duality between these two drawings.
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Observe, both from the algebra and the drawings, that p J g and
P N q are ggain switches of the same basic type: they have one
input and two output terminals and they are in ome of two possible
states. Either current will pass out of the off terminal or out of
the on terminal. By repeated application of these two constructions
plus negation, any expression which can be formed in the two element
Boolean algebra can be reproduced as a switching circuit. Thus, for
sxample, statements in elementary logic can be reduced to switching
circuits.

Example: Design a circuit so that a light can be turned on by
a switch at any one of three doors. Let the switches be denoted by
P, @, and r. The overall circuit is to be "on" whenever either of
porqor r is "on," i.e., it has the formula p U q U r. By one of
the axioms of & Boolean algebra, this can bte written (p U q) U r.
The circuit for p U q is given in Fig. 23, so (p U q) U r must be
the one shown in Fig. 25.

-6 2

Fig. 25

Example: A light is to indicate when two switches p and q are
both in the same position, i.e., the light is to be on if and only
if both p and q are on or both are off. Thus, the formula for the
circuit 48 (p N q) U (p N g). The construction for this circuit
is shown step by step in Fig. 26. 1In actusl construction, the pairs
of switches with the same lsbels would be ganged switches opersting
together.



hod|
=

q
—_—
PNg

F~-—"~"~"~"~=""~"=77=77
i

Fg. 26

The merit of making the identification between switching circuits
and the two element Boolean algebra is that it is comparatively easy
to translate a complicated verbal statement of the conditions to be
met into an algebraic formuls, then to use the axioms to reduce this
expression as much as possible, and then systematically to realize
the simplified expression as a circuit.

Example: Suppose that a circult must be designed to lock the gate
of a plant. It is stipulated that the gate ghgll be open only when
one of the following conditions is met:

i. a switch p {n the president's office and another, ¢, at the
guard's station are both on;

ii. vhen p is off, the gate is open if both the guard's switch
and one, r, controlied by the security officer are on;

iii. to insure extra protection at night there is a time clock
rwitch which, vhen off, keeps the gate locked unless all
three switches -- the president's, the guard's, and the
security officer's -- are on.

Design this circuit.

=160~



The circuit must be in one state -- on or off, it doesn't really
matter -- if and only if one of the following conditions are met:
either

i.pngqg orii.pnqnr, oriit.sNnpnqgnr.

Thus, the overall circuit is

(Pngdu(pngnr)u(snpnqgnr).

A fev manipulations of the axioms shows that this is equivalent to
the circuit q N (p U x). Interpreted verbally, the gate is open if
and only if the guard's switch 18 on and either the president's or the
security officer's is also on. In other words, the time clock plays
no role and the president and security officer have the same degree
of control. The realization of the circuit is shown in Fig. 27.

/

Fig. 27
It should be added that there are a variety of ways of drawing
the schematics of such circuits. This style was chosen because it
shows very clearly the dual roles of union and intersection (see
Figs. 23 and 24).

Problems

1-Drav the circuits for pU p and p N p in terms of the single

Mg -
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(ganged) switch p. By drawing the two different positions for
knife in p, show that the former amounts to a wire and the latter
to an open circuit.

2-Prove (pnNg)U(pnegnr)u(snpngqnr)=qn(pur)
using the axioms of a Boolean algebra.

3-Suppose a door is locked if p is off, or q is on, or if p is on
and q s off. Express this circuit algebraically, simplify, and
drav the resulting circuit in terms of the two switches p and q.

#} .6 EXISTEECE OF LIREAR UTTILITY FUKCTIONS

Judging by our emphasis on the axicmatization of functions, it is
reasonable to conclude that most of the successful axiomatizations
related to behavioral problems have assumed that form. However, some
important ones exist vhich are axiomatizations of systems, not functions.
One of the simplest to describe, and one for which some background was
established in section 3.11, is the axiomatization of a relation over
a set of gambles such that a linear utility function exists. You will
recall that vhen we first encountered this problem wve presented some
of the background and then inquired into the uniqueness of such
functions vhen they do exist. Of course, it is of even more interest
to know wvhen they exist, for if we know what conditions che preference
relation must meet then wve may have some idea whether it is suitable
to use linear utility functions {0 represent preferences.

As background for this discussion, it would be wise to reread
section 3.11. There we began with a finite set A of alternatives
and from this generated the set G of all gembles based upon A. One
vay to look at G 1s as the set of all probability distributions over
the elexents of A. Another way is to think of G as composed of all
elements of A and all elements of the form aoh, where a,b € G and &
is a reai number, 0 < a<1l. Such an element 18 interpreted as the
gamble in which the outcome is & (possibly anotber gambie) if an
event having probability a of occurring actuslly occurs and b if the
event fiils to occur.
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The elements of G are all possible cutcomes which may arise from
the basic outcomes A in a situation where there is risk -- vhere
chance events play a role in deciding exactly what outcome will result.
it is assumed that any given person will have yreferences not only
among the alternatives in A but also among all the gambles in G. Let
us denote this preference relation by > where a > b means that he
prefers gamble a to gamble b or he is 1nd:lfferent between them.

For the reasons cited in 3.11, it is of interest to know when a
real-valued function u with dowsin G exists having the two properties:

1-(order preserving) a > b if and only if u (a) > u(b),
and
2-(linearity) u(aob) = au(a) + (1 - a)u(d).

Such & function, when it exists, is known as a linear utility function
(for the preference relation > on G), and wve established that, while
not unique, it is determined up to a positive linear transformation.

The problem now is to establish comditions on > such that a
linear utility function exists. It will be recan.;d that, to prove
the uniqueness result, we found it necessary to derive in section 3.11
a property which > would have to be met if a linear utility function
exists. It was: if -3 > b > ¢, then there exists a probsbility o
such thet aoe . b. It seems Plasusible that there are other properties
which we might establish in much the same way. Some of these might
be independent of the ones previously derived; others might be
logical consequences. Furthermore, it is plausible -- though not
certain -- that if we derive enough of them we will finally be able
to show that whenever these are met, then a linear utility function
has to exist. OSuch a set of properties > constitutes the axiomatiza-
tion for which we are looking. A4s in ali such axdomatizations, there
is no unique set of axioms which will yield the result we want.

Various, apparently quite different, sets will do equally well in the
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sense that they are all logically equivalent to each other and from
any of them existence of a linear utility function can be establi~aed.
The choice among them is purely psychological. One wants axioms
vhich are fairly simple to understand and which have a certain
Plausibility. We want them to be in a form that a person will

agree (before he knows the theorem) that preferences do (or should)
satisfy these conditiona. For, by agreeing to them, then he has
implicitly agreed that preferences can (or should) be represented

by a linear mmerical utility function. This is something we cannot
expect him to agree to directly, and the whole point of the axiomatiza-
tion is to transform the problem to a different level where he 1s more
certain how preferences do (or should) behave.

Iet us present such a set of seven suitable axious.
Axiom 1. > is a weak ordering of G.

As we pointed out earlier, this axiom must be satisfied by any
preference relation which is to be eimply described mmerically.
Intuitively, there seem to be two major doubts about it. First, it
implies that strict preferences are transitive: if a is preferred
to b and b to ¢, then a is preferred to c¢c. It seems that we all
feel that preferences should be like this, but it is not difficult
to devise sets of altermatives which lead pecple into intransitive
traps. Second, it supposes that indifference is also transitive, and
that seems questionable. For example, in seasoning food most of us
would agree that we are indifferent between a given amount of pepper
and that plus vne grain more. But if indifference were transitive,
we would have to conclude that we are indifferent between any two
amounts of pepper, vhich is silly. Tvo alternatives seem possible;
either we can attempt to change the model quite seriously, for instance
by introducing probabilities of preferences, or we can say that s
wveak order is an approximation to reality -- an approximation which
is sometimes pretty good.
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Axiom 2. a > b > ¢ implies there exists an @, 0 > @ > 1, such
that aoc - .

This condition was derived in section 3.11, and we discussed its
meaning there. It amounts to saying that there is a contimuity of
rreferences. Again, it is doubtful that it is ever strictly true
for preferences, but it seems like a plausible approximetion to
reality.

Axiom 3. Iet a be any number such that 0 < @< 1, thena > b if
and only if aocce > bae for any c € G.

Assuming & linear utility function exists, this property of >
is proved in much the same way as the preceding property. It ha;
& very reasonable meaning: if you prefer a to b and then form the
two gambles acc and boe (note that the same probability and the same
alternative ¢ enters into each gamble), then your preference for a
controls your preference between the gambles.

Axiom 4. aom . a.

Axtam 5. aod . b(1l - a)a.
Axiom 6. alb . a.

These three are extremely simple to prove. For example, to
show axiom k4,

u(am) = au(a) + (1 - aju(a) = ula),
by linearity of u. But since u is order preserving, this implies that
aom . a&. These are equally easy to interpret. Just think of what aom
means and you see that & person would have to consider it preference-

wise indifferent to a. The other two are equally plausible.

Axiom 7. If O and B are not both O, then
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a
aa(bﬁe)-(na+ﬁ_@b)(c+s-aﬁ)c-
This is arrived at as follows:

ufax(bge)] = au(a) + (1 - aju(bpe)

= au(a) + (1 - a)paid) + (1 - @)(1 - Bhu(e)
= (0 + 8 - aB)grp—gg u(a) + (1 - 5o E—cghulb)]

+ (1L -a - g+ aglufe)
=(@+p - Blula grg -7zl + [1 -(@+p - 0B)lu(c)

=u[(aa+g_wb)(a+ﬁ-m)c]-

Pogsibly the easiest way to criticize this axiom is first to
consider a special case of it in conjunction with axiom 4, namely:

(acd)pb ~ acfd.

The assumption then is that the two stage gawble on the left, which
involves only two ultimate alternatives, is held indifferent to the
one stage gamble on the right. First, we observe that the two basic
alternatives have the same probability of occurring in both cases.
Thus, rationally, it certainly is a reasonable assumption, but it
does imply that the person does not receive any pleasure from the
gambling itself. Only the final chances over the alternatives count.
Fossibly, it is reasonable for certain important applications, suech as
business ones. There, one would hope, only the risks involved should
be considered, not whether they are divided into one or two stages.

Even if you feel, as wve do, that most people's preferences do not
satisfy these axioms, you can still feel that under some conditions it
would be desirable for a decision maker to satisfy them. If so, then
you are saying that ideally his preferences should be represented by a
linear utility function, for it can be shown (we will not do so here,
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but see problem 3) that any preference relation > on & set G of
gambles vhich satisfies these seven axioms can 'b; represented by a
linear utility function. This famous theorem was first proved by
von Neumann and Morgenstern in the second edition of The Theory of
Ganes and Econcmic Bchavior.

As we said, a mmber of other equivalent axioms systems can be
found in the literature. The only merit that really can be claimed
for one over another is that the axioms of one seem more intuitively
reasonsble. There are mmerous counter intuitive examples availsble
where one or another axiom appears to be untenable.

One of the main uses of this theory is to Justify introducing
mmerical payoffs into the theory of games. In section 2.6 we
described vhat is meant by the rules of the game. Awmong other
things, there was the game tree which described the pattesn of
decisions for the various players. Assigned to the end points of the
tree were certain outcomes, for the end point of the tree describes a
unique path of decisions through the tree. Now, if it is assumed
that each of the players has a preference pattern among the possible
outcames and gambles involving these outcomes which satisfy the seven
axioms abcve, then wve know that for each player each outcome can be
represented by a numerical utility. Thus, we can replace the assign-
ment of outcomes to the end points by the assigmment of the correspond-
ing utilities. This new structure, vhich is the same as the rules of
the game except that there are mmbers (utilities) instead of outcomes,
is known as the extensive form of a gane

*¥Problems

1-Using some of the seven axioms, show alb . b.

2-Derive the property expressed in axiom 5 from the assumption a
linsar utility function exists. Discuss its plausibility.

3-Choose any 8, b € G such that & > b. Define u(a) = 1 and
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u(b)} = 0. For any other ¢ € G, how would you use axiom 2 to
determine the value u(c)? (In the existence proof, this is
how u is actually constructed; the other axioms are then
utilized to sbow that it is both order preserving and linear.)
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